普通聚苯乙烯树脂属无定形高分子聚合物,聚苯乙烯大分子链的侧基为苯环,大体积侧基为苯环的无规排列决定了聚苯乙烯的物理化学性质,如透明度高.刚度大.玻璃化温度高,性脆等。可发性聚苯乙烯为在普通聚苯乙烯中浸渍低沸点的物理发泡剂制成,加工过程中受热发泡,**于制作泡沫塑料产品。高抗冲聚苯乙烯为苯乙烯和丁二烯的共聚物,丁二烯为分散相,提高了材料的冲...
查看详细 >>磁性高分子微球是近年发展起来的一种新型磁性材料,是通过适当方法将磁性无机粒子与有机高分子结合形成的具有一定磁性及特殊结构的复合微球。磁性复合微球不仅具有普通高分子微球的众多特性还具有磁响应性,所以不仅能够通过共聚及表面改性等方法赋予其表面功能基 (如-OH、-COOH、-CHO、-NH2,等),还能在外加磁场作用下具有导向功能。 ...
查看详细 >>分离纯化多肽的常用方法-置换色谱 HPDC 是利用小分子置换剂来交换色谱柱上的样品,从而达到分离的目的。它具有分离组分含量较少成分的特性。利用HPDC 鉴定分离了低于总量1% 组分的活性人重组生长(rHG )。在研究非毒**换剂时Jayarama 发现化葡萄糖(Detran Sulfate,DS)是对β 乳球蛋白A 和B 的良好置换剂,一...
查看详细 >>一、根据蛋白质溶解度不同的分离 1、蛋白质的盐析法:中性盐对蛋白质的溶解度有明显影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析。 2、等电点沉淀法:蛋白质在静电状态时颗粒之间的静电斥力**小,因而溶解度也**小,各种蛋白质的等电点有差别,可利用调节溶...
查看详细 >>纳米微球的应用极其范围广,几乎渗透到所有的产业:无论是新医药,平板显示,食品 安全检测,医疗诊断,还是水处理,节能环保,石油化工,**安全等都离不开先进 纳微米球材料。 在制药领域: 纳米孔道结构的微球材料具有极高的比表面积(1克微球材料的比表面积相 当于一个足球场的面积),因此具有极强的吸附性能,如果在微球表面键合特殊功能基 团使它可以...
查看详细 >>特点 PS一般为头尾结构,主链为饱和碳链,侧基为共轭苯环,使分子结构不规整,增 聚苯乙烯材料性能 聚苯乙烯材料性能 大了分子的刚性,使PS成为非结晶性的线型聚合物。由于苯环存在,PS具有较高的Tg(80~105℃),所以在室温下是透明而坚硬的,由于分子链的刚性,易引起应力开裂。 聚苯乙烯无色透明,能自由着色,相对密度也仅次于PP、PE,具...
查看详细 >>通过对产物的分散性,自然沉降速度,磁响应性的分析,可以看出PS-Fe_3O_4在水中的分散性优于PS-Fe_3O_4-ZnO;两者磁响应性很好;TEM结果说明合成的微球确实是由PS包覆Fe_3O_4,并且在其表面上形成了一层或多层颗粒;通过对荧光显微镜照片以及荧光图谱的分析可以确定包覆在PS-Fe_3O_4表面的一层或多层颗粒的确为ZnO...
查看详细 >>如何制作纳米微球呢? 离子交联法是制作纳米微球的基本方法之一,适用于以壳聚糖、海藻酸钠等 为材料的纳米微球。其主要原理是作为***载体的材料通过离子交联法从乳 液中析出,同时通过氢键相互作用和疏水相互作用将***包埋在载体中,从 而制备成载药微球。该方法制备条件温和,整个过程不使用对人体有害的试 剂,也成为载药微球的理想制备方法之一。 纳...
查看详细 >>种子溶胀法 种子溶胀法是指通过在溶胀种子微球内的 聚合制备多孔微球聚合物微球的方法。该方法包 括以下步骤:首先通过分散聚合或乳液聚合法 制备粒径单分散的线性聚合物微球,作为下一 步聚合的种子,同时起到线性聚合物致孔剂的 作用;将交联单体和功能单体,有时也包括溶剂 致孔剂加入到种子体系中,使种子充分溶胀;升 温并加入引发剂引发单体...
查看详细 >>包埋法方法简单,由于适用的多为水溶性天然高分子,因此其生物相容性好,表面富含多种功能基团,容易直接偶联生物大分子,但是其主要缺点是制备的微球粒径分布宽,形状不规则,磁粒子在不同微粒内含量不均一,各微球磁响应能力差别大,在外环境中易发生磁泄漏。而且包覆的壳层中难免会有些乳化剂之类的杂质,使其在生物医用等领域的应用受到一定的限制。 2.2原位...
查看详细 >>磁性高分子微球是近年发展起来的一种新型磁性材料,是通过适当方法将磁性无机粒子与有机高分子结合形成的具有一定磁性及特殊结构的复合微球。磁性复合微球不仅具有普通高分子微球的众多特性还具有磁响应性,所以不仅能够通过共聚及表面改性等方法赋予其表面功能基 (如-OH、-COOH、-CHO、-NH2,等),还能在外加磁场作用下具有导向功能。 ...
查看详细 >>如何精确控制和大规模化生产裸眼看不到的纳米微球并赋予这些材料的功能, 以满足现代产业的需求是当今纳米材料科学家**重要的研究方向。纳米微球 的关键技术问题和研究方向如下: 1) 纳米微球粒径大小径及粒径分布精确控制关键技术: 纳米微球的应用非常范围广,不同的应用需要不同性能的微球,很多**应用都 对微球的粒径大小和均一性都有极高的要求,如液...
查看详细 >>