同时三种传感器对各自检测气体灵敏度高,对其他气体的敏感性低,可有效区分不同气体浓度。主控mcu根据气体浓度值及其历史数据计算电池故障级别,并将其与电池电压值、温度值通过通信模块上传至后台系统,供后台系统及时对电池故障进行处理。灭火装置的选择,通过对锂电池火情进行分析,其主要以可燃气体为主,另外考虑电池是带电装置,因此灭火剂优先气体灭火剂,考虑到气溶胶可常压储存、灭火效率高、灭火剂无毒环保、耐腐蚀,因此本实施例中灭火装置选用s型热气溶胶灭火剂,该灭火装置体积较小,重量较轻,安装于电池箱内部,相较于安装于电池箱外的灭火装置,可在电池热失控引起燃烧时及时扑灭明火。检测多种可燃气体浓度,分别判断各种气体浓度数据、电池电压、电池温度数据是否超出设定阈值,上述参数均超出设定阈值时,启动灭火装置;或者,检测到明火或者燃烧现象时,启动灭火装置,提高探测准确性防止误报;并在启动灭火装置时同步断开主继电器、关闭风扇等多种措施提高灭火成功率并降低损失。电池电压检测模块检测电池箱内单体电池电压,并将电压采样值传输给mcu;电池温度检测模块检测电池箱内单体电池温度,并将温度值传输给mcu。内部风道也相应配对连通。杭州pack储能
推荐的,所述固定板顶部开设的内槽的长度和宽度大于伸缩板的长度和宽度,且固定板顶部开设的内槽深度小于固定板高度。(三)有益效果本实用新型提供了一种储能电池周转车,具备以下有益效果:(1)本实用新型通过设置固定板、伸缩板、调节螺栓、开口槽和分隔板,固定板固定连接在底座上表面,可以更好的支撑周转车架体结构的受力,固定板的内槽中设置伸缩板,且在固定板与伸缩板的连接处设置调节螺栓,固定板固定,伸缩板升降,通过调节螺栓调节固定板与伸缩板之间的固定,可以实现周转车车体的自由调节,增加了装置的实用性,伸缩板的板壁上下均匀设置有开口槽,可以根据具体情况将分隔板与开口槽卡接,使得周转车车体内部隔层可以自由调节拆卸,提高了装置的实用效果。(2)本实用新型通过设置减压板、泡沫缓冲板,设置减压板一方面可以降低底层托盘对底座的负载,另一方面可以增加两侧固定板之间的稳定,设置泡沫缓冲板可以更好的使托盘内部的储能电池在周转运输过程中不发生偏移,避免储能电池与托盘出现擦碰。附图说明图1为本实用新型的正剖图;图2为本实用新型的正视图;图3为本实用新型图1中伸缩板的后视图;图4为本实用新型图1中伸缩板的正视图。台州磷酸铁锂储能系统锂电池组在系统中同时起到能量调节和平衡负载两大作用。
进行电流幅值计算得到的反馈电流幅值ix比较后得到差值δix,对δix进行比例积分运算得到输出脉宽调制系数pmx;8)第x个储能变流器根据脉宽调制系数pmx和频率系数do及pwm算法生成驱动信号,实现开关管导通和关断控制;9)并联的各储能变流器自动均分负载。每一台并联的储能变流器的电流幅值参考值均相等,都为并网点pi运算得到的电流参考值io-ref,由于参考电流io-ref是由总电流检测值i和总电流参考值iref经pi运算生成的,因此系统可自动均分负载,特别是当并联储能变流器数量发生变化时,系统可自动重新均分负载。当并联的储能变流器数量发生变化时,系统也可自动对功率进行重新分配。实施例四在一个或多个实施例中,为了实现每一个并联的储能变流器的直流输出端可以连接不同电压等级的电池,公开了一种储能变流器的控制方法,参照图8,包括:以某台变流器a相控制过程为例,储能变流器通过交流滤波器、变压器t1及并网/并联控制柜与电网连接,直流侧dc1+及dc1-接电池的正负极,同时dc2+及dc2-,dc3+及dc3-连接的电池型号及电压等级与dc1+及dc1-连接的电池型号及电压等级不同。因三相直流输出端连接不同型号及电压等级的电池,储能变流器上电时,首先保证kdc1及kdc2断开。
每个单元外壳的位于两侧**外侧的侧面上分别固定有提手。本实用新型的有益效果是,本实用新型提供的具有阶梯式储能电池的变电站储能设备,合理设计了储能设备中各个**的储能电池的结构,并对单个储能电池侧向进行抽风散热,同时当需要组合堆叠时,两个储能电池可配队组合,内部风道也相应配对连通,形成整体的侧向抽风散热,提高散热,减少热量在底部和顶部的堆积。附图说明下面结合附图和实施例对本实用新型进一步说明。图1是本实用新型**优实施例的结构示意图。图2是本实用新型**优实施例的剖视图。图中1、左侧面2、右侧面3、提手4、隔板5、前侧面6、u型槽7、风扇8、通风口。具体实施方式现在结合附图对本实用新型作进一步详细的说明。这些附图均为简化的示意图,*以示意方式说明本实用新型的基本结构,因此其*显示与本实用新型有关的构成。如图1和图2所示的一种具有阶梯式储能电池的变电站储能设备,是本实用新型**优实施例,包括储能箱体。所述储能箱体内分布有若干个储能电池,所述的储能电池包括单元外壳,所述的单元外壳呈阶梯状结构,所述阶梯状结构从下至上具有3层,位于底层的单元外壳内则对应推入固定有3个电池组。所述外层散热翅片靠近安装板的一端朝向安装板延伸且抵接于安装板上。
由于每台pcs单独采样、单独控制,且采样和控制点均为每台pcs自身的输出点,尽管参考量是相同的,但输出仍然会存在微小的差异,可能会导致系统不稳定;同时,由于缺少总功率/电流、电压外环,控制目标是每台pcs自身的输出,因此并联后的总功率/电流、电压等可能会和并网/并联点的控制参量存在差异,并联系统总控制精度较低。电池管理系统(bms)作为储能系统的重要一环,担负着保证电池安全稳定运行的重任。常规的电池管理系统一般只检测电池电压、温度等参数,并通过单体电池电压变化及电池温度判断电池是否存在问题,如检测电池状态异常则根据报警级别进行充放电限流或主动切断电池系统主接触器。常规的电池管理系统*对电池产生的单一气体或可燃气体总量进行检测,来判断电池故障级别,无法实现电池故障的早期预警;一旦电池在使用过程中因故障达到热失控状态而起火,电池管理系统缺乏有效的灭火手段。技术实现要素:为了解决上述问题,本发明提出了一种储能系统及方法,对于并联储能变流器的控制,由并联/并网控制柜进行外环pi运算后,把电流内环参考分配给各并联pcs,各并联pcs再分别进行电流内环运算,能够有效消除各储能变流器分别采样及外环计算误差的不均衡问题。且通过散热组件对导热基座进行散热。厦门磷酸铁锂储能模组厂家
合理设计了储能设备中各个**的储能电池的结构。杭州pack储能
得到pi运算结果udcpi;idcref与直流电流采样值idc进行负反馈运算,得到误差值idcerr,idcerr送入直流电流环pi控制器进行pi运算,得到pi运算结果idcpi;udcpi与idcpi经过最小值运算后得到d轴电流环电流给定值idref,iqref在充电时设定为零,idref与id进行负反馈运算得到iderr,iderr送入d轴电流环pi控制器进行pi运算得到idpi;iqref与iq进行负反馈运算得到iqerr,iqerr送入q轴电流环pi控制器进行pi运算得到iqpi,ud与uq分别减去idpi与iqpi后,分别除以母线电压采样值udc进行归一化,将归一化后的值送入spwm驱动波形产生电路,产生的四路spwm驱动信号分别驱动q1、q2、q3、q4的开通与关断,q1、q2、q3、q4的开通与关断过程中在电路杂散电感中产生的尖峰电压,通过吸收电容c2、c3进行吸收,避免igbt过压损坏,电容c4的直流电压通过q1、q2、q3、q4的开通与关断,在q1与q2连接端及q3与q4连接端产生高频spwm电压波形,高频spwm电压波形经过l1、l2与c1组成的滤波回路滤波后得到平滑的交流正弦波形,控制spwm产生的正弦波形与电网电压间的幅值差和相位角,从而得到与电网电压同相位的电流波形il,储能变流器从电网吸收能量,实现对电池的充电。其中上述所有pi控制器均带有限幅功能。杭州pack储能
浙江瑞田能源有限公司主要经营范围是能源,拥有一支专业技术团队和良好的市场口碑。公司自成立以来,以质量为发展,让匠心弥散在每个细节,公司旗下新能源电池,锂电池,储能电池,叉车电池深受客户的喜爱。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于能源行业的发展。浙江瑞田能源有限秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。