从实际应用的角度看,石墨烯需要和基板接触,因此,减少石墨烯薄膜和基板之间的接触热阻是石墨烯热管理应用必须考虑的问题。单层或少数层石墨烯和基板之间的范德华力可以保证石墨烯和基板之间很好的热耦合[42]。但是石墨烯薄膜由于厚度较大,范德华力远远不能满足热从基板传递到石墨烯薄膜上。传统的连接基板和散热片之间的导热胶由于体积和热导率较低的原因,已经满足不了实际应用的需求,必须采用共价键等其他的方式,以增强热传递的效率。本团队在这方面做了一些探索性的工作,主要采用在石墨烯薄膜和二氧化硅界面引入功能化分子的方法。实验结果表明,引入功能化分子后,热点的散热效果提高了近1倍石墨烯环氧树脂由石墨烯与环氧树脂原位聚合制备得到,有效解决了石墨烯分散的难题。氧化石墨烯涂料
氧化石墨烯的性能:(1)含有丰富的羟基、羧基和环氧基等含氧官能团,更高的氧化程度,更好的剥离度;(2)易于接枝改性,可与复合材料进行原位复合,从而赋予复合材料导电、导热、增强、阻燃、***抑菌等性能;(3)易于剥离成稳定的氧化石墨烯分散液,易于成膜。氧化石墨烯的应用领域:应用于热管理、橡胶、塑料、树脂、纤维等高分子复合材料领域,还可以应用于锂电正负极材料的复合、催化剂负载等。氧化石墨烯分散液的性能:(1)含有丰富的羟基、羧基和环氧基等含氧官能团;(2)易于接枝改性,可与复合材料进行原位复配,从而赋予复合材料导电、导热、增强、阻燃、***、抑菌等性能;(3)SE3122在水中具有很好的分散性,样品单层率>90%,产品经轻微搅拌就可与水相互溶;氧化石墨烯分散液的应用领域:应用于锂电正负极材料,还可以应用于橡胶、塑料、树脂、纤维等高分子复合材料领域。过滤氧化石墨烯研发可应用于电机、变压器、电力电缆、电气柜、新能源汽车、风力发电、电触头材料等领域。
由于石墨烯三维网络具有巨大的比表面积和独特的光电特性,基于石墨烯的材料已被用于各种传感设备的构造。俞书宏教授团队[38]制备了RGO/聚氨酯(PU)海绵传感器,其电阻变化依赖于在压缩变形过程中导电纳米纤维之间接触程度的改变。测试表明,该压力传感器可以检测低至9Pa的压力,当压力到达45Pa时能够提供清晰的输出信号,具有非常高的灵敏性,并且可以在1万次循环测试中输出可重复的信号。基于RGO/PU海绵压力传感器具有高灵敏度、长循环寿命和可大规模制造的特点,使其有希望成为制造低成本人造皮肤的理想选择。
当今世界面临着严峻的环境与能源挑战。传统能源如煤、石油的不断消耗以及环境的日益恶化严重影响了人类的日常生活以及社会的正常发展。因而开发更为高效与环境友好的能源设备越来越得到人们的强烈关注。为**的初代锂离子二次电池以其在能量密度与操作电压上明显优于传统铅酸与镍镉电池的优势,迅速应用于便携电子设备电池市场。其后,随着具有环境友好、成本低廉、循环性能稳定等诸多优势的以磷酸铁锂为**的正极材料的报道[6,7],锂离子二次电池的应用也扩展到混合动力汽车与纯电动汽车领域。然而目前锂离子电池电极材料还存在着诸多问题,如较低的电子电导率与锂离子迁移效率、嵌脱锂过程中巨大的体积变化、电极材料与电解液的副反应造成的容量损失以及活性物质不可逆的结构变化制约材料的循环稳定性等。另外,由于目前常用的锂离子电池正极材料固有的理论容量限制,实际应用的锂离子电池的比能量密度很难突破250Wh/kg[8],因而难以满足其在高比能量电池领域的长远发展。在这种背景下,锂硫电池作为一种新的电化学储能体系,以其超高的理论能量密度(2600Wh/kg)以及单质硫储量丰富、环境友好的特点,成为高比能二次电池的研究热点。 常州第六元素制备石墨烯的方法简单易行、环境友好。
自碳纳米管(CNTs)在1991年被Iijima报道以来[10],这种具有一维纳米尺寸的管状碳材料以其独特的力学、电学、热学及光学特性,在电极材料、医学、储氢装置和催化剂等诸多领域[11~13]得到了广泛的应用。锂离子电池领域是碳纳米管相当有潜力的应用方向之一。首先,碳纳米管自身就是一种***的锂离子电池负极材料;其次,碳纳米管尤其是使用化学气相沉积技术制备的定向生长的三维碳纳米管阵列具备优异的机械强度,并且由于其独特的弹道电子传导效应及抗电迁移能力,其电导率可高达105S/m[14]。将其作为三维导电结构或导电添加剂加入到其他电极材料之中,不但可提高复合电极的电子与离子传输能力,还可***增强电极的机械性能。氧化石墨烯易于接枝改性,可与复合材料进行原位复合。氧化石墨烯涂料
可用于注射和挤出成型制件,尤其适用于煤炭、矿井以及石油天然气运输等领域的管材制件。氧化石墨烯涂料
涂膜法是一种操作简单、效率相对较高的制备方法,常见的涂膜法可分为喷涂法和旋涂法两种。3〇^0山6[46]等人将00悬浮液喷涂在预热后的51/3丨02基材上,待溶剂完全蒸发后得到石墨烯薄膜。在喷涂过程中,可通过调节喷雾持续时间和分散液浓度来精确地控制GO片的厚度及密度,进一步还原后所得到的石墨烯薄膜可作为P型半导体,并表现出良好的场效应响应。除了普遍使用的喷涂法之外,Lian[47]等人将电喷雾沉积法与卷对卷工艺相结合,经过机械压实和2200°C高温处理后得到***石墨烯薄膜,热导率比较高可达1434Wnr1K-1,并且可实现大面积生产。Bao[4]等人将GO分散液沉积在强氧化剂处理过的玻璃基材表面,并使基材分别以500rpm、800rpm和1600rpm的速度旋转30s,***在100°C烘箱中干燥得到超薄石墨烯薄膜,其电阻可降低至1〇2?l〇3nnr2范围之间,透光率高达80%,在透明导体方向有着良好的应用前景。 氧化石墨烯涂料