采用如下技术方案:一种终端设备,其包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并上述的储能系统的控制方法。与现有技术相比,本发明的有益效果是:(1)本发明储能系统可扩展性好,均流精度高,可集成ems功能,能够简化系统的结构。在本发明控制方式下,由于控制参量全部是相同的,控制参量的生成取决于并网点电压、功率/电流,和pcs数量无关,数量发生变化时,可自动调整每台pcs的功率/电流。(2)本发明提出了双向交直流转换控制方法,构建了三相分立运行电路拓扑架构,解决了单相数字坐标变换及锁相问题,提高了储能系统对电网和不同电池电压的适应性和灵活性。(3)本发明提出了基于三环控制的储能变流器并网控制方法,解决了变流器测量和运算导致的不均衡问题,实现了储能变流器可靠稳定接入电网,提高了储能变流器并网负荷均衡精度。(4)本发明提出了基于三环控制的储能变流器离网并联控制算法,解决了离网并联控制系统自动负荷分配的难题,实现了储能变流器有序并联,提高了系统的可扩展性。离网并联时,并联控制柜增加总电流pi控制环节,总电流和各并联储能变流器电流均受控。然后对锂电池组充电,通过逆变器将直流电转换为交流电对负载进行供电。光伏储能电池
进行电流幅值计算得到的反馈电流幅值ix比较后得到差值δix,对δix进行比例积分运算得到输出脉宽调制系数pmx;8)第x个储能变流器根据脉宽调制系数pmx和频率系数do及pwm算法生成驱动信号,实现开关管导通和关断控制;9)并联的各储能变流器自动均分负载。每一台并联的储能变流器的电流幅值参考值均相等,都为并网点pi运算得到的电流参考值io-ref,由于参考电流io-ref是由总电流检测值i和总电流参考值iref经pi运算生成的,因此系统可自动均分负载,特别是当并联储能变流器数量发生变化时,系统可自动重新均分负载。当并联的储能变流器数量发生变化时,系统也可自动对功率进行重新分配。实施例四在一个或多个实施例中,为了实现每一个并联的储能变流器的直流输出端可以连接不同电压等级的电池,公开了一种储能变流器的控制方法,参照图8,包括:以某台变流器a相控制过程为例,储能变流器通过交流滤波器、变压器t1及并网/并联控制柜与电网连接,直流侧dc1+及dc1-接电池的正负极,同时dc2+及dc2-,dc3+及dc3-连接的电池型号及电压等级与dc1+及dc1-连接的电池型号及电压等级不同。因三相直流输出端连接不同型号及电压等级的电池,储能变流器上电时,首先保证kdc1及kdc2断开。广州电池储能市电接入用户侧低压电网或经升压变压器送入高压电网。
储能变流器的直流侧通过直流母线连接蓄电池组;蓄电池组连接电池管理系统(bms);考虑到储能电池管理的需求,ems在进行能量管理计算和运行方式判断的时候,储能电池的状态是一个主要的限制因素,一般需要对电池进行均衡,对电池均衡时,一般要对电池进行分组充电,这个时候就要对直流母线进行分段,每段母线接入一个或几个pcs,对应一套或几套储能电池。在一些实施方式中,直流侧留有光伏、风电、电动汽车v2g等新能源直流接入端口,用于低压直流场所有光伏、风电、电动汽车v2g等分布式能源输入的工程场所。光伏、风电、电动汽车v2g等分布式发电一个比较大的特点是能源供给的不稳定,往往存在较大的波动,因此在应用时经常要配套储能电池,这类新能源供应的直流电可以接到本系统输入直流母线上,公用储能系统,也可通过pcs并网或并机使用。常用于如高速公路光储充系统、海岛风光储系统等工程项目设计中。在一些实施方式中,公开了一种储能变流器,其结构包括:三相支路,每一相支路包括:自并网/离网控制柜到直流蓄电池端,依次串联连接隔离变压器、交流滤波器、交流软启动回路、滤波电路、桥式逆变电路、直流母线电容、直流滤波器和直流软启动回路。
进行运行方式的转换。并网控制柜根据ems发送的控制参量,进行并网/联点外环功率/电压控制,并生成各pcs的内环瞬时电流控制参量,发送给储能变流器pcs1~n。储能变流器pcs1~n**进行内环瞬时电流控制,类似电流源,有效控制。本实施方式中,ems是能量管理**,并网/联控制柜运行状态转换**,同时也是功率/电压、电流外环控制**,并联pcs则是**执行部分,并进行瞬时电流控制。在一些实施方式中,并网/联控制柜可以进行自主能量管理,取代能量管理系统职能,此时可取消能量管理系统(ems)。实施例二在一个或多个实施例中,公开了一种储能系统的控制方法,参照图6,并网或并联控制柜工作在并网模式时,具体包括如下过程:1)采集并网点三相电压和三相电流;2)对并网点三相电压进行锁相,得到电网运行频率;3)dq变换模块将采集的三相电压和三相电流进行αβ/dq变换,得到两相同步旋转坐标系下实际总反馈电压和反馈电流;4)瞬时功率变换模块根据得到的两相同步旋转坐标系下实际总反馈电压和反馈电流按下式确定并网点的瞬时有功功率和瞬时无功功率;其中,p和q分别表示并网点总的瞬时有功功率和瞬时无功功率,ud表示并网点总的d轴实际反馈电压,uq表示并网点总的q轴实际反馈电压。发电量不能满足负载需要时。
第二实施例:如附图4至附图6所示,所述电池储能箱2为包含内空腔的箱体结构,所述电池储能箱2朝向散热通道6一侧的壁体和所述电池储能箱2远离于散热通道6一侧的壁体上均贯通开设有若干散热孔7。通过若干散热孔7以加快电池储能箱2内腔中的热量扩散。所述电池储能箱2内腔中沿散热通道6的长度方向间距设置有若干隔离条9,所述隔离条9为长条状结构,且各个所述隔离条9的长度方向沿垂直于散热通道6的方向设置,两相邻所述隔离条9之间的区域形成电池腔,所述电池腔内容纳电池组8。通过隔离条9将电池组8隔开,同样也是避免两相邻的电池组直接接触导热,保证电池组的安全性。且相应的,两相邻所述电池腔之间形成次级散热通道10,所述电池储能箱2两侧壁上的散热孔7均对应于次级散热通道10设置,所述次级散热通道10通过散热孔7与散热通道6连通设置。在散热组件4工作状态下,所述次级散热通道10与散热通道6为气流提供流动通道,以保证对两电池储能箱2的快速散热。第三实施例:还包括侧封板5,两个所述侧封板5分别对应封闭设置在散热通道6的两端,且所述散热通道6通过侧封板5形成封闭腔,从而使得在散热扇在向散热通道6排风的状态下,气流不至于从散热通道的两端流出。同时当需要组合堆叠时。光伏储能电池
所述外层散热翅片靠近安装板的一端朝向安装板延伸且抵接于安装板上。光伏储能电池
包括:主控制器mcu、电池电压检测模块、电池温度检测模块、气体浓度检测模块、灭火装置、热管理模块和通信模块。其中,mcu与电池电压检测模块、电池温度检测模块、气体浓度检测模块、灭火装置、热管理模块和通信模块分别相连。气体浓度检测模块包括一个或多个内置于电池箱内的气体检测单元,该单元可通过485总线将数据传输给安装于电池箱外的bms控制单元,bms控制单元内部设置主控制器mcu、电池电压检测模块、电池温度检测模块、热管理模块和通信模块。气体检测单元与bms控制单元的分开布置有效解决了电池箱内空间有限,不利于安装控制模块的缺点,同时485总线通信方式可根据实际需求布置检测单元数量。每个气体检测单元包括多个费加罗气体检测传感器和数据处理子单元,数据处理子单元通过多种检测气体传感器采集气体浓度数据,并通过485通信总线将数据传输给mcu;在一些实施例中,每个气体检测单元包括一个co传感器、一个h2传感器、一个烷烃类传感器以及数据处理子单元,数据处理子单元采集气体浓度信息后通过485通信总线的方式发送给主控mcu。传感器选择费加罗电化学气体传感器,该类传感器对气体的检测具有很高的灵敏度和良好的稳定性,预热时间小于30s。光伏储能电池
浙江瑞田能源有限公司致力于能源,以科技创新实现***管理的追求。公司自创立以来,投身于新能源电池,锂电池,储能电池,叉车电池,是能源的主力军。浙江瑞田能源有限致力于把技术上的创新展现成对用户产品上的贴心,为用户带来良好体验。浙江瑞田能源有限始终关注能源行业。满足市场需求,提高产品价值,是我们前行的力量。