本实用新型属于电池管理系统领域,特别涉及一种温度控制的储能电池管理系统。背景技术:目前,电池管理系统(bms系统)是对电池进行管理的系统,包括储能箱体以及箱体内腔中的各种电气元件。电池管理系统通常安装在电池箱上,电池管理系统工作时产生较多热量,而电池箱在工作时本身散发大量的热量,且部分热量对电池管理系统造成干扰,若该区域热量不能及时排出,则较大程度的影响电池管理系统的工作性能。技术实现要素:发明目的:为了克服现有技术中存在的不足,本实用新型提供一种温度控制的储能电池管理系统,能够及时对电池管理系统的储能箱区域进行散热,保证电池管理系统的正常工作。技术方案:为实现上述目的,本实用新型的技术方案如下:一种温度控制的储能电池管理系统,包括储能箱体和设置在所述储能箱体上的散热装置,所述散热装置包括导热基座和设置在所述导热基座上的散热组件、安装支架,电池管理系统的储能箱体通过安装架支撑设置在导热基座上,且所述导热基座通过散热组件进行散热;所述散热组件包括散热翅片组和散热扇,且所述散热扇向散热翅片组风冷散热设置。进一步的,所述导热基座远离于储能箱体的一侧设置有安装板,所述安装板对应于散热翅片组。内部风道也相应配对连通。深圳磷酸铁锂储能
且所述安装板上贯通开设有至少一个安装孔,所述安装孔设置有散热扇。进一步的,所述散热翅片组包含若干板状的散热翅片,且若干所述散热翅片平行间距设置,所述散热翅片之间形成散热通道,所述散热通道的一端对应于散热扇的风口设置,且另一端为敞口设置。进一步的,若干所述散热翅片的端部与安装板间距设置,且位于散热翅片组中**外侧的两个散热翅片为外层散热翅片,所述外层散热翅片靠近安装板的一端朝向安装板延伸且抵接于安装板上,所述散热扇均位于两个外层散热翅片之间。进一步的,所述导热基座与储能箱体接触导热设置,且所述导热基座对应于储能箱体凹设有油脂凹槽,所述油脂凹槽内填充有导热硅脂。进一步的,所述导热基座上设置有若干支撑座,所述导热基座通过支撑座连接于承载体上,且所述支撑座的底面至导热基座的间距大于或等于散热翅片组的底面至导热基座的间距;所述散热翅片组通过支撑座接触或间距于承载面。有益效果:本实用新型通过导热基座对储能箱体进行支撑和导热,且通过散热组件对导热基座进行散热,能够及时对电池管理系统的储能箱进行散热,保证电池管理系统的正常工作。附图说明附图1为本实用新型的整体结构示意图。广州电动车储能电池本实用新型的有益效果是。
其控制策略及实验平台的实现是本文重点研究内容之一。3)电池管理系统BMS是一种由电子电路设备构成的实时监测系统,能有效地监测电池系统的各种状态(电压、电流、温度、荷电状态、健康状态等)、对电池系统充电与放电过程进行安全管理(如防止过充、过放管理)、对电池系统可能出现的故障进行报警和应急保护处理以及对电池系统的运行进行优化控制,并保证电池系统安全、可靠、稳定的运行。BMS系统是BESS中不可缺少的重要组成部分,是BESS有效、可靠运行的保证。电池系统及其各级组成部分的荷电状态(StateofCharge,SOC)是实现整个电池系统是否能安全、可靠运行以及对其进行准确管理与控制的关键指标,因此,准确估计出电池系统及其各级组成部分的SOC是BMS**重要的功能之一,也是本文重点研究内容之一。(2)BESS的典型结构目前BESS的研究与开发还处于初级阶段,并未存在完全统一、成熟的系统结构形式,但其系统结构形式与容量扩大方式有关。当前BESS容量扩大主要有两种方式:第一种方式是从扩大单个PCS容量角度出发,通过采用高压、大电流变换器或级联多电平技术实现BESS的扩容;第二种方式是从系统角度出发,采用多个模块化BESS并联运行来实现BESS的扩容。
虽然第一种方式的系统结构简单且较适合高压大容量系统,具有一定发展潜力,但因受电力电子器件发展水平、投资成本及控制技术等因素制约,在目前实际应用中的大规模BESS较少采用第一种方式。对于第二种方式,从目前BESS在电力系统中的工程应用情况来看,根据电池储能系统典型结构BESS的接入方式、功率等级及放电持续时间等方面来分,其典型结构主要有:低压小容量BESS、中压大容量BESS、高压超大容量BESS,图1-4为3种BESS典型结构图。图1-4(a)为低压小容量BESS,系统由一个模块化BESS构成,一般直接接入400V交流电网中,额定功率通常在500kW及其以下,可放电持续时间为1~4h,可用于微网主电源、小区或楼宇储能、小型可再生能源并网等场合;图1-4(b)为中压大容量BESS,它是将多个模块化BESS并联后再经升压设备接入10kV或35kV电网,通常其额定功率在10MW及其以下,可放电持续时间为1~4h,可用于电能质量治理、削峰填谷、备用电源及可再生能源并网等场合;图1-4(c)为高压超大容量BESS,它是将多个模块化BESS并联后经低压升压设备组成中压大容量BESS,再将多个中压大容量BESS并联后经高压升压设备接入35kV或110kV电网,通常其额定功率在10MW以上。把蓄电池中的直流电变成标准的380V。
保证进入封闭腔内的气流能够经过各次级散热通道,从而带走电池储能箱内的热量。第四实施例:所述侧封板5为矩形板体结构,且所述侧封板5的顶端通过铰接件12铰接设置在封盖3上,且所述侧封板5的底端通过锁紧件11锁附在基座1上,所述锁紧件11为螺栓,通过侧封板的铰接设置,方便侧封板5安装,且通过锁紧件11和侧封板5将封盖、电池储能箱和基座连接固定。第五实施例:所述基座1、封板3对应于散热通道6的壁体均向散热通道6内凹设,经凹设后进入所述散热通道6内的壁体形成限位凸起13,两个所述电池储能箱2分别抵接在限位凸起13的两侧,且两个所述电池储能箱2通过限位凸起13保持间距,从而避免两电池储能箱2贴合,同时也方便安装,所述封盖3的外轮廓向下延伸形成凸缘14,所述基座1的外轮廓向上延伸形成凸缘14,两所述凸缘14均位于两电池储能箱的外侧,通过两凸缘14对两电池储能箱2进行周向限位。以上所述*是本实用新型的推荐实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。一方面把调整后的电能直接送往直流或交流负载。广州锂电池储能模组
光伏电站并网,尤其是大规模光伏电站并网对电网带来的影响是不可忽视的。深圳磷酸铁锂储能
本实用新型涉及电池存放转移工具技术领域,具体为一种储能电池周转车。背景技术:周转车是一种生产生活中必备的存放转移工具,储能电池可以用于太阳能、风能发电设备和可再生能源储蓄能源,周转车可以有效地将储能电池存放转移至工作区域,加快工作生产效率,传统的周转车车体不可调节,车体内部的托盘隔层固定不可拆卸,实用性**降低。目前,现有的储能电池周转车在使用时存在,不能对车体内部结构进行调节,运输少量储能电池时车体空间占据大,储能电池运输过程中容易移动,车体结构稳定性差等缺点,局限性较大,因此有必要对现有技术进行改进,以解决上述问题。技术实现要素:(一)解决的技术问题本实用新型的目的在于提供一种储能电池周转车,以解决上述背景技术中提出的现有的储能电池周转车在使用时存在,不能对车体内部结构进行调节,运输少量储能电池时车体空间占据大,储能电池运输过程中容易移动,车体结构稳定性差的问题。(二)技术方案为实现上述目的,本实用新型提供如下技术方案:一种储能电池周转车,包括底座、伸缩板和分隔板,所述底座的上方固定连接有固定板,且固定板关于底座长度方向对称设置有两个。深圳磷酸铁锂储能
浙江瑞田能源有限公司致力于能源,以科技创新实现***管理的追求。浙江瑞田能源有限拥有一支经验丰富、技术创新的专业研发团队,以高度的专注和执着为客户提供新能源电池,锂电池,储能电池,叉车电池。浙江瑞田能源有限始终以本分踏实的精神和必胜的信念,影响并带动团队取得成功。浙江瑞田能源有限始终关注能源市场,以敏锐的市场洞察力,实现与客户的成长共赢。