阻尼器的物资进场质量控制;1、参加施工单位组织的对阻尼器分包单位的考察,建设单位、设计单位共同参加,共同判定拟选用的分包单位资质、技术能力、深化设计能力、加工供货能力是否满足项目要求。2、确定分包单位后,监理应从源头入手,熟悉施工图及阻尼器深化图,了解设计意图和各项技术性能、技术指标要求。按设计要求对预埋件和阻尼器的原材材质进行审核;对分包单位所用阻尼器原材进行见证取样送检;对阻尼器的型式检验报告、合格证等进行审核;对阻尼器见证取样送具备相应资质的检测单位进行检验,抽检数量不少于同一类型、同一规格总数量的3%,检测合格率应为100%(检测后的消能器不能应用于主体结构),阻尼器质量证明文件齐全、复试合格后方可允许进行安装。3、阻尼器进场后按方案要求卸在指定位置,根据设计编号、出厂编号或使用位置成套进行摆放。运输和存放时要有防护措施,防止产品受到污染和碰撞对产品性能造成影响。在产品未安装时,可暂不撕掉出厂包装,并存放在能防太阳暴晒、防潮的地点。 粘滞阻尼器摩擦阻尼器的区别?高楼阻尼器工艺
粘滞阻尼器工作原理;粘滞阻尼器的特点是对结构只供给附加阻尼,而不供给附加刚度,因而不会改变结构的自振周期。其长处是:1、经济性好,可削减剪力墙、梁柱配筋的使用数量和构件的截面尺度。2、适用性好,不只能用于新建土木工程结构的抗震抗风,而且能广泛应用于已有土木工程结构的抗震加固或震后修复工程。3.装置了粘滞性耗能器的支撑不会在柱端弯矩比较大时给柱附加轴力。4、保护费用低。缺陷是暂无。实际工程的应用中多采用斜向型和人字型装置方法,这是由于其结构简略、易于安装。剪刀型和肘节型装置方法能把阻尼器两头的位移扩大,即起到把阻尼器的效果扩大的作用,具有更好的消能才能,但因受到装置机结构型和施工工艺复杂的约束,运用较少。粘滞阻尼器由缸筒、活塞、粘滞流体和导杆等组成缸筒内充溢粘滞流体,活塞可在缸筒内进行往复运动,活塞上开有适量的小孔或活塞与缸筒留有空地。当结构因变形使缸筒和活塞发生相对运动时,迫使粘滞流体从小孔或空隙流过,然后发生阻尼力,将振荡能量经过粘滞耗能消掉,达到减震的意图。 钢结构阻尼器生产周期上海摩擦阻尼器安装要求?
阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、**、***炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了大量实验,严格审查,反复论证,特别是地震考验的漫长过程。扩展材料:阻尼器只是一个构件.使用在不同地方或不同工作环境就有不同的阻尼作用。Damper:用于减振;Snubber:用于防震,低速时允许移动,在速度或加速度超过相应的值时闭锁,形成刚性支撑。各种应用中有:弹簧阻尼器,液压阻尼器,脉冲阻尼器,旋转阻尼器,风阻尼器,粘滞阻尼器,阻尼铰链,阻尼滑轨,家具五金,橱柜五金等。
粘滞阻尼器;是应用粘性介质和阻尼器结构部件的相互作用产生阻尼力的原理设计、制作的一种被动速度相关型阻尼器,一般由缸筒、活塞、阻尼孔、阻尼介质(粘滞流体)和导杆等部分组成。当工程结构因振动而发生变形时,安装在结构中的粘滞阻尼器的活塞和缸筒之间发生相对运动,由于活塞前后的压力差使粘滞流体从阻尼孔中通过,从而产生阻尼力,耗散外界输入结构的振动能量,达到减轻结构振动响应的目的。阻尼介质为硅油,该介质具有粘温系数小、极低和极高温度下(-50℃~+250℃)性能稳定、抗照射性能好的优点,同时具有优良的电气绝缘性能和优良的抗臭氧、耐电晕、憎水防潮性能。粘滞阻尼器的发展经历了三代的发展:首代使用的是高粘度阻尼介质,因受温度影响较大阻尼特性不稳定、且易疲劳,故产品性能较差;第二代使用了低粘度阻尼介质和溢流阀,相对一代比较稳定,但溢流阀易受到破坏,该代产品在国内发展及应用不多。第三代产品采用了低粘度阻尼介质,没有溢流阀且采用的是小孔射流技术,很好地克服了前两代产品的缺点,产品性能稳定,阻尼特性好。 调频质量阻尼器质量厂家?
摩擦阻尼器的产品介绍基本原理:摩擦阻尼器是由开有长槽孔钢板与上下两块摩擦片之间的相对滑移产生摩擦力,将建筑物的振动能量转化为热能,从而达到减轻结构振动相应的目的。调整螺栓的紧固力可改变滑动摩擦力的大小,滑动摩擦力与螺栓的紧固力成正比。摩擦阻尼器的产品特点:1.摩擦阻尼器的耗能能力强。2.性能稳定,耐久性良好。3.微小位移下也能产生阻尼力。4.大震也不会损坏,不会造成损失,因此也不需要更换。5.摩擦阻尼器的维护成本低。超高层阻尼器用的材料?上海阻尼器生产图
钢结构阻尼器工作原理?高楼阻尼器工艺
如何确定液体粘滞阻尼器的型号数量以及如何布置;(1)通过对液体粘滞阻尼器结构的时程分析,确定粘滞阻尼器所在层的层间速度;(2)根据各层的层间速度及各层消能器所应承受的层比较大水平力,估算各层粘滞阻尼器的阻尼系数,层比较大水平力按消能器所在层以上各楼层总重量的3%~5%来控制的;(3)在程序中增加粘滞阻尼器单元,输入上一步估计的阻尼系数进行时程分析,与无控结构相比,结合层比较大水平力和目标位移(层位移或层间位移)等控制指标,进一步确定层阻尼系数(每层中所有阻尼器系数的总和)和层阻尼力(每层中所有消能器阻尼力的总和);(4)根据上一步确定的层阻尼系数和层阻尼力,以及选用的单个粘滞阻尼器型号(阻尼系数和阻尼力),确定各层消能器的数量和布置,即由层阻尼系数或层阻尼力除以单个消能器的阻尼系数或阻尼力而得到;(5)液体粘滞阻尼器的阻尼系数、数量和布置确定后,由时程分析后的层间位移确定消能器的量程,由比较大阻尼力确定阻尼器的阻尼力.以上在设计粘滞阻尼器的过程中,由于阻尼器的型号、目标位移和层比较大水平力等控制指标的相互影响,设计不可能一次完成,往往需要调整多次才行。 高楼阻尼器工艺