山东亿金电气有限公司的干式真空有载分接开关结构特点本型开关属空气绝缘、单电阻过渡、真空触点快速切换的组合式柜式开关,它主要包括切换开关、分接选择器、储能机构、减速箱、电气控制部分、控制器等组成。1切换开关它放置在分接开关左上侧,主要由一根凸轮轴上的6个凸轮带动6个真空开关管及三组单、双档转换触头,按一定程序动作,过渡电阻安置于真空管下方。2分接选择器它放置在分接开关左下侧,主要由链条、链轮带动六组动触片上下移动,实现选择分接触头的目的。3储能机构它放置在分接开关右上侧,它通过机械机构将能量储存在弹簧内,然后将弹簧储存的能量释放,带动切换开关动作。4减速箱它安装在分接开关右侧中部,它主要改变电动机的输出转速,同时将动力传递给分接选择器和储能机构。5电气控制部分它安装在分接开关的右下方,主要通过中间继电器来控制电机运转及换向,同时还装有电机保护开关及连档保护等组成。 干式无励磁分接开关。配电变压器分接开关波形
随着电力系统联网或扩网,为了消除负载不平衡现象,提高装机容量的利用率,减少系统内大型设备启动而造成电压波动,或者为了便于在整个电力系统不停止供电的情况下对某台变压器作停电检修,就往往需要把两台或多台有载调压变压器的高低压侧分别并联在一起投入运行。因此.必须考虑分接开关运行的自动控制问题。分接开关并联运行有同步联锁法、小环流法和逆电抗法三种自动控制方式。这三种并联运行自动控制适用范围不同,控制方法各有差异,并具有各自的优缺点。调容分接开关故障分接开关的使用可以延长变压器的使用寿命。
不同接线组别的配变对负载损耗的影响在10kV配电网络负荷中,居民负荷为配电网的主要负荷,因此必然会存在三相负荷不平衡的现象。当配电变压器处于不对称运行状态下时,中性线就会有电流通过,当三相变压器采用Yyn0接线组别时,则要求中性线由于单相不平衡负荷引起的中性线电流要在低压绕组额定电流的25%以下,而且其一相电流即使处于满载情况下也不能高于额定电流值。当变压器采用Dyn11接线方式时,由于一次绕组的零序电流能够在绕组内环流,可以对二次绕组的零序磁通起到一定的削弱作用,不会造成配电变压器过热情况的发生。可以说利用Dyn11接线组别时,能够实现配变容量的充分的利用,有利于降低成负载损耗。1.4不同接线组别的配变对三相电压不平衡的影响在配电变压器容量相同的情况下,采用Yyn0接线组别的零序阻抗比要高于Dyn11接线组别的零序阻抗比,而且在当相同的零序电流作用下,采用Yyn0接线组别的零序电压也会比采用Dyn11接线组别的配变零序电压高出很多,因此采用Dyn11接线组别的配电变压器中性点电压比偏移较小,这对于平衡三相电压十分有利。
普通的有载分接开关都是放在变压器油中工作的。随着城市高层建筑等对防火要求的提高,以及变电所推行无人值班,设备必须无油化,还有地下铁道、地下变电所场合,潜艇基地等,许多地方都采用干式变压器来供电。相应的有载分接开关也要求无油化,国内已研制生产了与之配套的干式真空有载分接开关,空气有载分接开关,阻燃油有载分接开关。由于真空有载分接开关有一系列的优点,因此在油浸式有载分接开关也可以用真空开关来代替机械式开关。1920年,美国通用电气公司首先制造出了电抗式有载分接开关。1927年,德国创造出电阻式有载分接开关,所谓“扬生式”有载分接开关。由于电阻式有载分接开关材料消耗少,体积小,电弧时间短,电弧触头寿命长等原因,目前除美国外,这种结构已普遍被各国采纳。山东亿金电气有限公司的干式真空有载分接开关,正是采用电阻式,真空触点代替机械电弧触头,寿命更长不产生电弧。质量可靠。。。有载分接开关怎么填型号?
真空有载分接开关是随着真空灭弧室的发展而发展的,两者有密不可分的关系。要研究真空有载分接开关的发展概况,就必然要了解真空管的发展历程。人类从事将真空作为灭弧和绝缘介质的研究,到现在已经有100多年的历史。早在1893年,美国的里顿豪斯就首先制造出真空管模型,进行了开关电弧的研究。1920年,瑞典的佛加公司研制出世界上首台真空开关。近年来我国真空管的设计理论,制造工艺,质量水平都有了质的飞越,真空管制造技术日趋成熟。国内真空有载分接开关使用厂家有上海华明、上海舟鑫、贵州长征、山东亿金电气等。总之,国产的真空有载分接开关制造技术水平和产品质量有了很大提高,能够满足国内电力发展的需求。随着真空有载分接开关产品投入市场,不仅为电力系统提供了在传统的油浸式非真空有载分接开关之外的另一种选择,而且大量的运用往往是一种比较经济的方案。干式真空有载分接开关是干式有载调压变压器的必选配件之一,山东亿金电气有限公司生产的干式系列分接开关能满足90%以上的干式变压器用户。有载分接开关的价格是多少?真空分接开关说明书
有载分接开关的主要部件包括隔离开关、接地开关、电流互感器等。配电变压器分接开关波形
分接开关中,绝缘问题亦为主要问题之一。由于分接开关与变压器绕组相连接。因而,分接开关绝缘上的电压负荷取决于变压器的设备**.高电压、调压范围、调压部位(线端调、中部调、中性点调)、调压方式(线性调、正反调、粗细调)、绕组接法和绕组结构布置等。分接开关的绝缘分为外绝缘和内绝缘两种。外绝缘的耐受电压己经标准化,且纳入GB和IEC标准中。在单相和三相中Y接分接开关上,外绝缘即为对地绝缘。在D接(△接)三相分接开关上,外绝缘为对地绝缘和相间绝缘,两者都决定于设备比较高电压Um。外绝缘的全波冲击与工频的试验电压比值,与Um有关,在(Um=,全波冲击电压值350kV/交流工频电压值140kV)和(Um=420kV,全波冲击电压值1425kV/交流工频电压值630kV)之间。因此,很明显,对于外绝缘主要由外施工频电压试验所决定,而冲击试验对决定分接开关的尺寸所起作用不大。分接开关的内绝缘不可能标准化,只能分等标定额定耐受电压。 配电变压器分接开关波形