以业内主流的移动底盘Apollo来说,其融合了激光雷达、深度摄像头、超声波及防跌落等多个传感器,并结合了思岚科技自主研发的高性能SLAM算法。使其拥有可靠、易用的定位导航方案,即使面对各类复杂环境,它也能做到自主路径规划及障碍物规避等功能。激光雷达:可帮助机器人时刻扫描周围环境,提供地图数据,构建高达5cm精度的地图,并基于该地图数据实现自主路径规划及导航功能;深度摄像头:可侦测到位于雷达扫描平面上方的障碍物,并及时发送信号进行规避;超声波传感器:在工作时,能精确探测到玻璃、镜面等高透材质障碍物,从而在靠近这些物体前能及时避让;防跌落传感器:可帮助机器人 360°侦查周围的工作环境,判断工作区域是否存在边界、台阶、坡度等情况,从而发送请求信号,避免跌落。轮式移动机器人底盘直线悬挂减震装置。常州轮式服务机器人底盘
PDO模式,既然SDO模式已经可以控制电机、反馈电机状态数据了,为什么还要搞一个PDO模式呢?仔细一想,就会发现两个问题:1.每次SDO控制都会反馈一个报文,这个反馈会占用总线时间,而我们不总是想要反馈信息;2.每次想要某个字典的数据时候,都需要先发一个询问的报文,Server才能反馈数据。实操起来似乎有些麻烦,于是我们就会想:1.有没有一种方式,我往某个字典地址里填充数据,它不会给我反馈,而是直接修改我需要修改的值?2.有没有一种方式,它会周期性地把某个字典的数据抛上来给我,而不用每次都去询问?伟大的前人已经帮我们想好了,那就是PDO模式。无锡服务机器人底盘生产厂家机器人底盘的导航系统可以使用激光雷达、摄像头或惯性导航等技术。
双舵轮驱动结构[适合1T以上负载,同时要求可以任意方向平移的场合],双舵轮驱动结构是目前市场上较常见的结构之一,其结构由两个驱动轮和一个或多个非驱动轮组成,通常应用于中等载重的AGV上。由于其结构设计合理,可以更好地保持AGV在直线行驶时的稳定性,并且转弯时无需特殊技巧,因此在市场上得到了普遍应用。双舵轮底盘常见的2种结构形式有:1)舵轮居中布置:舵轮布置在车体中心线上,前后对称布置,直线行走时,前后舵轮调整同样的角度实现路径偏移调整,自转时,左右舵轮转动90度,变成差速式,可实现自转。2)舵轮对角布置:舵轮中心对称布置,运动形式相较中心线布置时调整较为复杂。
差速结构移动机器人由于左右两边速度差形成的转向方式,实际运行中,由于地面摩擦力的问题,可能会出现位置漂移,控制精度差,对于需要需要精确定位的应用场景探索与开发稍显不足 。这几种形式也受制于移动机器人本身的成本和机械结构,导致减速机与结构实用寿命有限,因此差速类型移动机器人在工业与消费类移动机器人应用中需要持续稳定的运行上存在着天生的短板,维护周期较短。相比四轮差速结构,四转四驱移动机器人系统更像是以软件为主导的动力四驱系统,可以依靠软件定义不同的模式,或者系统根据工况自行调节,在操作难度上更低,更加智能化 。基于机器人底盘直接进行上层开发的机器人企业越来越多。
麦克纳姆轮驱动结构【适合运行频率较低、同时要求任意方向(固定)平移和旋转的场合】,麦克纳姆轮底盘由4个麦克纳姆轮组成,麦克纳姆轮的滚轴倾斜角必须按照下图布置。该底盘的优点是:可以任意方向平移或旋转,是运动灵活度较好的底盘。运动学要求4个轮子必须同时着地,这样才可以达到理想的运动控制。4个轮子如果刚性与底盘连接,根据3点确定1个平面的原理可以知道,其中1个轮子必然悬空或受力很小。为了解决该问题,有如下2种建议方式:1)将前面或后面2个轮子使用弹簧做成上下浮动结构。2)将前面或后面2个轮子做成一组浮动桥臂。所谓的平衡桥臂就是1根杆上面左右固定2个轮子,中间做一个铰接轴和车架固定。使2个轮子合并为1个受力点。从而使4个麦克纳姆轮都可以同等受力。总的来说,AGV底盘的结构设计应根据自身的使用环境、载重和行驶速度来进行选择。在选择时,需要注意的是结构的稳定性、驱动能力、转弯半径等因素,同时要考虑生产成本和维护成本的平衡。移动机器人底盘提供了标准通用的设计,方便客户进行二次开发。SLAM导航底盘结构
底盘搭载高精度传感器,实时感知周围环境,保障机器人自主导航。常州轮式服务机器人底盘
接下来,我们认识一下PDO模式中,两种数据传输模式的主要思想:RPDO,RPDO的发送是由接收方发起的,一般由控制器或主机向从设备发送指令,要求从设备将数据发送给控制器或主机。这个过程,其实就像邮局派发信件。RPDO就是这个邮局,它先在你家门口设置一个信箱,当收到你的信件之后,它不会在意你是否给予反馈,反正邮局的信件随时都可以塞到你家信箱。TPDO,TPDO的发送是由发送方发起的,通常是由从设备向控制器或主机发送数据,以便控制器或主机能及时了解从设备的状态。这种数据传输方式更像是一种「双向约定」——每隔1个小时,你就给我报一下时。常州轮式服务机器人底盘
模块化定位导航系统(SLAMWARE),模块化定位导航系统内置SLAM引擎的导航定位主要模块,高度集成,无需借助外部运算资源,可直接输出机器人所在环境地图、定位坐标姿态,内置多种机器人运动控制算法,可提供厘米级别的定位和地图精度,在未知环境中实时规划路径,并进行障碍物规避导航,自主寻找较短路径。在机器人底盘结构除了使其拥有自主定位导航及路径规划功能,自主回充技术也是不可或缺的,而Apollo采用的自主回充技术,可外部调度预约充电。当电量较低时,会自主返回充电坞充电,在负载情况下可实现15小时连续不间断工作,给应用现场提供稳定可靠的表现。市面上轮式机器人底盘的功能要求越高的机器人,底盘的价格也相...