超声微泡相关图片
  • 甘肃超声微泡荧光,超声微泡
  • 甘肃超声微泡荧光,超声微泡
  • 甘肃超声微泡荧光,超声微泡
超声微泡基本参数
  • 品牌
  • 星叶生物
  • 型号
  • 定制
  • 是否定制
超声微泡企业商机

荧光标记的靶向微泡在非心脏病血管的应用。使用荧光微泡可以通过***显微镜实现超声造影剂靶向的验证。特异性配体包括抗p选择素的抗体,该抗体可通过局部给药肿瘤坏死因子(TNF)-进行化学诱导。通过显微镜和超声观察到***后小静脉内抗p选择靶向气泡和白细胞的聚集。缺血再灌注损伤后(如肾动脉结扎模型),p选择素上调,微泡可靶向炎症的肾血管。出于分子成像造影剂开发的目的,一种不需要***手术的更简单的动物模型可能是有用的,例如在脚垫注射TNF-后建立的后腿血管化学诱导炎症反应小鼠模型。该模型用于测试聚合微泡与抗体靶向泡。细胞间黏附分子(ICAM)-1和血管细胞黏附分子(VCAM)-1是炎症反应的重要标志物,在血管内皮表面上调的时间晚于p选择素。携带这些抗体的微泡可用于大鼠自身免疫性脑脊髓炎模型的分子成像。超声已被证明可以增强溶栓,超声与微泡结合使用,在溶解血栓方面比单独使用造影剂或超声更成功。甘肃超声微泡荧光

甘肃超声微泡荧光,超声微泡

组织中的微泡检测可以利用超声介导的微泡破坏。超声压力通常以机械指数(MI)的形式出现在医学成像系统的屏幕上,一个相对商,计算为峰值负声压除以频率的平方根。非线性微泡行为一般在声压较高时表现得更明显(例如MI 0.2)。在某些系统中,它可能是检测到的***机会,例如,较小的微泡。在更高的压力下(MI 0.4和高达1-1.9,取决于频率),微泡被破坏,它们的声学后向散射信号完全消失,这可以提供额外的证据,证明目标造影剂存在于组织中。一些气泡壳(通常是那些涂有薄脂质单层的)是柔韧性的,即使在低压超声(例如MI 0.06)下也会振动。对于厚壳聚合物气泡,除非达到临界压力并且外壳破裂,否则微泡不会振动,并且声回波响应仍然很低。对于壳较厚的气泡,从气泡中产生回声的临界声能更高。甘肃超声微泡荧光纳米微泡比超声微泡具有更好的被动瞄准能力。

甘肃超声微泡荧光,超声微泡

**组织中的生物学改变对纳米微泡的效率起着至关重要的作用。正常组织微血管内皮间隙致密,内皮细胞结构完整,而实体瘤组织新生血管内皮孔在380 ~ 780 nm之间,内皮细胞结构完整性较差。因此,与正常组织相比,一定大小的分子或颗粒更倾向于在**组织中聚集。这种现象被称为EPR (enhanced permeability and retention)效应,被认为是完成**组织被动靶向***的机制。在临床前试验中,与传统化疗相比,基于EPR的药物或基因递送靶向系统在***功效方面取得了显着进展。在过去的几年里,各种基于EPR效应的纳米材料已经被应用,其中纳米级纳米气泡的大小可以根据**血管中孔隙的大小而改变。鉴于不同类型**的内皮细胞中存在不同的间隙大小,因此必须根据**的类别建立合适尺寸的纳米材料。同样,纳米颗粒到达血液循环系统时,生物屏障所产生的阻碍也需要高度重视。因此,考虑到这些挑战,为了更好地利用纳米材料递送中的EPR效应,设计了各种处理方法。基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。

超声微泡有效地产生反向散射超声,增强对比度,以便将目标部位(血管)与周围组织区分开来。它还可以比较大限度地减少噪声和背景信号。超声微泡的声学特性产生成像信号,由美国成像仪器检测。使用超声微泡进行诊断的频率范围约为2-18 MHz。共振频率与超声微泡的尺寸成反比,并受超声微泡表面配方特性的影响。超声微泡对波传播幅度的增加具有非线性响应,从而产生谐波频率分量,从而提高了美国成像的空间分辨率。超声微泡被用作造影剂,因为固体和液体颗粒无法提供超声微泡给出的后向散射信号。另一种实时无创成像技术是光声(PA)成像,它需要激光源照射、光敏剂和超声换能器来收集产生的声信号。PA成像是基于热弹性膨胀和造影剂存在下光子到超声转换的光能吸收。PA与超声波相结合,能够以高空间分辨率显示深部组织。Meng等人进行了一项简单的研究,利用超声波将mb转化为纳米颗粒,目的是在小鼠模型的PA成像过程中获得无背景的强信号。超声微泡的广泛应用使研究人员能够调整靶向效率和响应性,例如超声/光热/pH/光触发药物释放。用于输送气体、药物和核酸,这些载体与超声波、光热、pH和光(刺激触发)超声微泡相结合。

甘肃超声微泡荧光,超声微泡

荧光标记的靶向微泡在血管生成过程中的应用。内皮表面的许多内皮标记物被上调,特别是αvβ3和血管内皮生长因子(VEGF)受体。血管生成可以是*结生长的标志,也可以作为***慢性缺血(例如骨骼肌)的***干预手段。监测这些情况在临床前动物研究和临床中可能很重要。血管生成内皮的分子成像可以通过针对αvβ3或蛇毒崩解素肽echistatin的抗体进行。方便的是,具有RGD基序的echistatin在多种动物模型中对αvβ3具有高亲和力,而抗体通常是物种特异性的,不能用于多种动物模型。Echistatin微泡可用于通过超声评估基质模型和更现实的**环境中的血管发育;共聚焦显微镜**确认靶向微泡蓄积。用抗VEGF受体2抗体修饰的气泡还可以检测**区域的血管生成内皮,甚至可以监测******的进展。在血管生成的血管环境中,还有各种各样的其他配体可用于微泡固定和靶向,如RRL肽、针对内啡肽/CD105的抗体等。可用于其他成像方式的小分子(多肽或模拟物)可以固定在泡壳上,以引导其到达αvβ3。气泡将改变血管壁,允许药物剂外渗,通过将微泡与颗粒和染料共同注射,可评估血管外药物递送的可行性。microbubble超声微泡实验

了解微泡靶向性的方法是在体外受控条件下,以已知的流速、配体和受体密度进行靶向性研究。甘肃超声微泡荧光

超声照射联合纳米微泡的生物学效应。超声给药技术是基于细胞穿孔的生物物理过程,超声结合纳米微泡和这个过程被称为超声穿孔。与其他纳米粒子相比,纳米微泡在超声能量照射下具有“塌缩”的特殊性质,导致纳米微泡内爆,改变细胞膜的通透性。当超声能量充分增加时,就会发生“超声空化”效应,即液体中的气泡(空化核)振动生长,不断地从声学场中积累能量并坍缩,直到能量达到某一阈值。超声波照射引起超声空化,导致细胞膜出现直径约300nm的空隙,稳定空化的特征是纳米气泡重复的、不坍缩的振荡,对附近细胞产生局部低应力和剪切应力,从而增加血管的通透性。此外,超声波辐照还能产生热和机械***作用。超声波辐照的生物学效应可以增加细胞膜的通透性,诱导基因转移,提高细胞内药物浓度,栓塞**,滋养血管,克服组织屏障,发挥至关重要的靶向作用。甘肃超声微泡荧光

与超声微泡相关的**
信息来源于互联网 本站不为信息真实性负责