制药设备相关图片
  • 河南CRISPR/Cas9纳米药物制备设备芯片,制药设备
  • 河南CRISPR/Cas9纳米药物制备设备芯片,制药设备
  • 河南CRISPR/Cas9纳米药物制备设备芯片,制药设备
制药设备基本参数
  • 品牌
  • INano,迈安纳,Gennano
  • 型号
  • 齐全
制药设备企业商机

INanoE适用的芯片盒类型包括可重复用的R-SDM芯片和一次性的S-SDM芯片,两者的流速范围都是0.1-60ml/min。以下是这两种微混合器的相关信息:R-SDM芯片:这种芯片的特点是可以重复使用,适合在需要多次进行相似实验或生产时使用,以降低成本和提高效率。它适用于0.1-60ml/min的流速范围,能够满足不同规模制备的需求。S-SDM芯片:这是一种一次性使用的芯片,适合在需要考虑交叉污染或保持无菌条件的实验中使用。同样地,它的流速范围也是0.1-60ml/min,确保了与R-SDM芯片相似的操作灵活性和适用范围。综上所述,无论是选择R-SDM芯片还是S-SDM芯片,用户都可以根据具体的实验需求和成本效益进行选择,以实现理想化的实验结果。Nano系列设备基于自下而上的分子组装机制进行纳米颗粒的制备,更适合生物大分子的包封;河南CRISPR/Cas9纳米药物制备设备芯片

河南CRISPR/Cas9纳米药物制备设备芯片,制药设备

INano系列GMP级别设备会按照GMP管理规范进行FAT(FactoryAcceptanceTest,出厂验收测试)、SAT(SiteAcceptanceTest,现场验收测试)和IOQ(InstallationQualification,安装确认)测试。这些测试是确保设备能够在实际生产环境中正常运行的关键步骤。以下是这些测试的具体含义和目的:DQ(DesignQualification,设计确认):这是在设备制造之前的阶段,主要确认设备的设计方案是否符合预定要求和标准。FAT:这是在设备制造厂家处进行的测试,目的是验证设备是否按照设计图纸正确制造,并且能够在厂家的环境中正常运行。这一阶段的测试有助于确保设备在运输到用户工厂之前是完好无损的,减少因设备损坏导致的退换货麻烦。SAT:当设备到达用户工厂后,会进行SAT。这一阶段的测试主要是验证设备在实际的生产环境中,连接上用户的公用系统后,是否能够正常运行。这包括了安装测试和运行测试。IOQ:这是在设备安装完成后进行的测试,目的是确认设备的安装是否正确,是否符合GMP规范的要求。这一步是GMP范畴内的,通常由用户方主导进行。北京mRNA-LNP纳米药物制备设备工业化生产INano L适用的微混合器类型包括可重复用的R-SDM芯片和一次性的S-SDM芯片。

河南CRISPR/Cas9纳米药物制备设备芯片,制药设备

INano系列实验室级别设备的软件符合FDA21CFRPart11的要求,具备了审计追踪、权限分级、方法管理和报告导出等关键功能。具体如下:审计追踪(AuditTrail):该功能能够记录所有用户的操作历史,包括登录、数据输入、修改和删除等,确保了数据的完整性和可追溯性。权限分级(AccessControl):软件提供了基于角色的访问控制,允许管理员根据用户的职责分配不同的权限等级,从而限制对敏感数据的访问。方法管理(MethodManagement):用户可以创建、修改和使用实验方法,确保实验过程的标准化和规范化。报告导出(ReportExport):软件支持将实验结果导出报告,便于数据分析和存档。此外,为了满足21CFRPart11的规定,软件还需要具备一些其他的功能,如电子签名、数据安全和系统安全性等。这些功能有助于保护数据不被未授权访问或篡改,确保了数据的真实性和可靠性。综上所述,INano系列实验室级别设备的软件不仅满足了FDA的严格要求,而且通过提供一系列高级功能,帮助实验室确保了数据的准确性和合规性,同时也提高了工作效率和管理水平。

INano系列中的INanoL/L+设备集成了配方筛选和工艺放大功能,这种设计使得在实验室制备阶段就可以评估放大风险,从而减少了后续放大生产的风险,为用户节省了时间和物料。在药物开发过程中,从小规模的实验室制备到大规模的商业生产是一个充满挑战的过程。以下是关于INanoL/L+设备如何帮助简化这一过程的详细介绍:配方筛选:在药物开发的早期阶段,研究人员需要测试和优化药物配方。INanoL/L+设备提供了精确的微流控混合技术,使得研究人员能够在实验室规模上快速评估不同配方的效果。工艺放大:一旦配方确定,下一步就是将其放大到工业生产规模。这是一个复杂的过程,因为放大可能会影响产品的质量。INanoL/L+设备通过模拟工业生产条件,允许用户在实验室环境中直接进行放大实验,这样可以减少将实验室配方转换为工业生产过程时的风险。风险前置:通过在早期阶段就考虑放大的问题,INanoL/L+设备使得用户能够预见并解决可能出现的问题,而不是在后续的生产阶段才面对这些问题。这减少了资源浪费和项目延误的风险。时间和物料节约:由于INanoL/L+设备可以在实验室阶段就完成配方筛选和工艺放大,因此可以避免在放大过程中可能出现的问题,从而节省了大量的时间和物料成本。INano P用于中等规模GMP级纳米药物生产,适合临床研究,中等规模GMP生产。

河南CRISPR/Cas9纳米药物制备设备芯片,制药设备

INano系列设备所使用的混合芯片管路套件能够提供支持生物相容性研究的完整资料。材料选择:微流控芯片在设计时会特别考虑生物相容性,选择合适的材料是提高生物相容性的关键步骤。例如,聚二甲基硅氧烷(PDMS)等硅胶类聚合物、聚甲基丙烯酸甲酯(PMMA)等热塑性聚合物以及新兴的热塑性弹性体(TPE)或软热塑性弹性体(sTPE)等都是常见的材料选择。表面改性:为了减少蛋白质吸附和细胞粘附,研究人员会对芯片表面进行化学改性,以改善生物相容性。应用实例:CureMed公司使用微流控设备包封环状mRNA制备疫苗的研究展示了该技术在实际应用中的潜力。通过这种技术制备的疫苗具有良好的理化稳定性和诱导免疫反应的能力。技术支持:对于使用INano系列设备的研究者,我们通常会提供必要的技术支持和服务,包括如何利用混合芯片管路套件进行生物相容性研究的资料和指导。持续更新:随着材料科学和微纳加工技术的发展,生物相容性研究的方法和策略也在不断进步。因此,研究者应当关注前沿的研究成果,以便在实验设计中加以应用。INano可用于制备脂质纳米粒(LNPs),脂质体,聚合物纳米粒等一系列纳米材料。脂质体纳米药物制备设备

INano系列设备可以用于筛选mRNA序列、脂质成分、脂质配方比例以及N/P比等。河南CRISPR/Cas9纳米药物制备设备芯片

INano系列设备可以通过调节两相混合的总流速,流速比,调节制备样本的粒径等理化性质。具体来说,以下是影响脂质纳米颗粒(LNP)粒径的关键因素:总流速:总流速是指两种不相溶液体在微流控设备中流动的速率总和。通过增加或减少总流速,可以影响液滴的形成频率,从而影响颗粒的大小。流速比:流速比是指两种不相溶液体流动速率的比例。不同的流速比会导致不同的混合效果,进而影响颗粒的尺寸和均一性。脂质摩尔比:脂质摩尔比决定了颗粒的脂质组成,并影响其大小、形状和稳定性。合适的脂质组合和比例对于形成具有所需特性的LNP至关重要。配方的成熟度:对于成熟的配方,通常可以获得更窄的粒径分布,即PDI(多分散性指数)在0.1以下,这意味着颗粒大小的均一性更高。微流体技术的限制:使用微流体技术制备的LNP的粒径通常限制在大约30至100nm范围内。这是因为微流体技术能够在较小的尺寸范围内精确控制颗粒的形成。封装活性成分:封装在脂质纳米颗粒中的活性成分,如寡核苷酸或RNA,也会影响颗粒的大小和稳定性。这些成分需要被有效保护,以避免在递送过程中受到酶降解。河南CRISPR/Cas9纳米药物制备设备芯片

与制药设备相关的**
信息来源于互联网 本站不为信息真实性负责