超声联合纳米微泡进行核酸输送超声联合纳米微泡进行DNA传递。不考虑超声穿孔现象,建议采用US与带核酸的微泡相互作用来提高传输效率。这种策略也可能有助于遗传物质的位点特异性释放,从而减少非共振组织转染。通过纳米微泡转移基因已经采用了几种技术,从基因的并发管理到纳米泡系统内的内涵。有多种方法,包括利用阳离子脂质组成纳米气泡的外壳用于DNA的静电附着,在制备过程中直接将DNA物理组装在外壳中,在外壳上应用阳离子聚合物层用于DNA的静电相互作用,携带DNA的纳米微泡载体的共价结合以及利用兼容的DNA链建立纳米微泡。分析发现,在体外,基于脂质的纳米微泡比基于白蛋白的纳米微泡引起几次基因转染。此外,在小鼠肝脏中也观察到脂基纳米微泡的主要基因转移。亚微米大小的气泡与传统的手持式超声检测仪器相结合,已被证明是一种高效的基因转移试剂。亚微米尺度的气泡被开发并建议作为一种有前景的基因传递方法。这些配体组合的微泡靶向成功地在动脉血管区域积累,但在对照组小鼠中却没有,尽管有高剪切流量。上海超声微泡mRNA
载药超声微泡造影剂的设计之一是使药物由于细胞内pH值的变化或外部光或声音的刺激而释放。修饰超声微泡的一个很有前途的策略是使用电荷可切换的纳米颗粒,这种纳米颗粒可以经历表面电荷从负向正的变化,从而增加细胞的摄取。此外,还可以提出超声微泡的其他刺激响应设计。例如,活性氧(ROS)反应性超声微泡可以被开发用于产生触发药物释放的系统。这是通过将超声微泡与ROS响应材料结合来实现的,其中光或超声介导的ROS产生可以提高超声微泡释放药物的速度。此外,由于***病例中ROS水平升高,超声微泡也可以利用ROS响应荧光探针进行成像或实时监测,以检测富含ROS的病变。中国澳门供应超声微泡气泡将改变血管壁,允许药物剂外渗,通过将微泡与颗粒和染料共同注射,可评估血管外药物递送的可行性。
微泡的惯性空化和破坏可产生强大的机械应力,增强周围组织的渗透性,并可进一步增加药物从血液外渗到细胞质或间质中。超声造影剂是高回声的微泡,具有许多独特的性质。微泡基本上可以提高常规超声成像对微循环的灵敏度。微泡响应入射超声脉冲的共振导致非线性谐波发射,在微泡特异性成像中作为微泡的特征。高频超声的稳定空化也可以温和地增加组织的通透性,即使在高的情况下也不会造成任何损害声压。微泡可以携带药物,释放药物超声介导的微泡破坏同时增强血管通透性,增加药物在组织中的沉积。可以将各种靶向配体偶联到微泡表面,实现配体定向和位点特异性积累,用于靶向成像。
超声已被证明可以增强溶栓,超声与微泡结合使用,在溶解血栓方面比单独使用造影剂或超声更成功。**近,Unger等人开发了一种针对活化血小板的超声造影剂MRX408。该试剂使用另一种结合方法,将精氨酸甘氨酸天冬氨酸(RGD)分子直接附着在造影剂的表面。RGD与活化血小板上存在的糖蛋白IIB/IIIA受体结合。MRX408已被证明可以提高血栓的可见性,并在体外和体内更好地表征血栓的范围。超声已被证明可以增强溶栓,无论是否添加微泡,通常与静脉绐药溶栓剂结合使用。超声频率为1-2 MHz时,已证明有效溶栓并将***相关出血降至比较低。靶向微泡或游离微泡可静脉注射或直接进入血栓。超声引导溶栓***背后的机制涉及到微泡本身的机械特性。在低频和高功率下,造影剂会膨胀和收缩,并有可能使血栓破裂。此外,t-PA等溶栓剂可以被纳入气泡中,并在气泡破裂时沉积到血栓中。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。
超声微泡可以通过各种制造方法来制造,这些方法已经被引入和优化,以获得可复制的尺寸,生物相容性,生物降解性和高成像稳定性的回声特性。MNB的制造过程必须注重生物相容性和安全性,以免在体外和体内阶段测试时产生毒性。在制造阶段,涂层配方将决定寿命,对刺激(如超声波)的响应,并影响超声微泡的自组装尺寸。药物装载有几种策略,例如将药物和气体封装在**内,将药物同化到**和外壳之间的层中,以及利用静电相互作用。表面活性剂的加入,如Tween,可以维持超声微泡的稳定性,防止超声微泡携带的药物聚结。另一种药物装载方法是通过应用静电相互作用来帮助配体附着在超声微泡外壳或基因递送上。用超声微泡递送核酸也有助于延长其在血液中的循环时间,防止核酸的降解,并增强靶向药物递送的功效。为了获得如上所述的所需体系,可以使用一些技术来生产超声微泡,即超声、乳化、机械搅拌、激光烧蚀、喷墨和逐层法。“主动靶向”一词指的是用特定生物标志物标记的超声微泡,允许它们被驱动到特定的目标。西藏超声微泡试剂
纳米微泡比超声微泡具有更好的被动瞄准能力。上海超声微泡mRNA
超声联合纳米微泡递送RNA。YinT.等利用异源组装方法制备了携带siRNA的**纳米微泡,利用超声照射靶向SIRT2基因抗细胞凋亡。该制剂改善了siRNA-纳米微泡对基因组的沉默作用,从而***改善了*细胞的凋亡。因此,在裸啮齿动物的胶质瘤变体中观察到显着增强的***结果。YinT.等进一步研究建立了US-sensitive纳米微泡,同时携带***siRNA和紫杉醇(PTX),针对BCL-2基因***肝脏**,基于他们的研究结果。siRNA和PTX的有效递送是通过将纳米微泡注射到带有人HepG2异源瘤的裸鼠的血液循环中,并应用主动低频(低于1MHz)超声照射到肿瘤细胞的位置。在动物实验中,由于两种药物的联合抗肿瘤活性,使用低剂量的PTX可以抑制**的发展。为了***前列腺*,Wang等通过静电方法设计了携带雄***受体的纳米微泡。负载siRNA的纳米微泡与超声照射结合,极大地抑制了细胞生长,抑制了蛋白质和ARmRNA的产生。上海超声微泡mRNA