二代测序——应用领域类问题
二代测序在**研究中的应用有哪些:可用于**的早期筛查,通过检测血液中的循环**DNA;进行**的诊断分型,确定**的基因突变特征;评估***效果,监测***过程中肿瘤细胞的基因变化;预测**的预后,分析与预后相关的基因标志物;还可用于寻找**的新靶点,为靶向***药物的研发提供依据。二代测序在遗传病诊断中的优势和局限性:优势在于能够快速、***地检测基因组中的变异,包括单核苷酸变异、小插入缺失、拷贝数变异等,提高了遗传病的诊断率。局限性在于对于复杂基因组区域的检测可能存在困难,如高度重复序列区域;检测到的变异需要进一步的功能验证和临床解读,部分变异的致病性难以确定;此外,成本相对较高,对于一些罕见病的诊断,可能需要较大的样本量和更深入的分析。 二代测序是先打断DNA,使其片段化。四川嘉安健达二代测序技术
二代测序——转录组测序的实验流程(下)
测序
根据研究需求和预算选择合适的测序平台,如 Illumina 测序平台。它的测序原理主要是边合成边测序(SBS)。在测序过程中,dNTP(脱氧核糖核苷三磷酸)带有不同颜色的荧光标记,当新的 dNTP 加入到正在合成的 DNA 链时,通过检测荧光信号来确定碱基类型,从而读取 cDN**段的序列。测序深度(覆盖度)也是一个重要参数,一般来说,测序深度越高,检测到的低表达转录本的概率就越大,但成本也会相应增加。
数据分析
数据质量控制是第一步,要去除低质量的 reads(如含有较多不确定碱基 “N” 的 reads)和接头序列。然后将高质量的 reads 比对到参考基因组或转录组上,常用的比对软件有 TopHat、STAR 等。在确定了 reads 的位置后,就可以计算转录本的表达量,常用的方法有 RPKM(Reads Per Kilobase of exon model per Million mapped reads)、FPKM(Fragments Per Kilobase of exon model per Million mapped fragments)等。此外,还可以进行差异表达分析,找出在不同样本条件下(如疾病组和健康组)表达量有***差异的转录本,用于后续的功能注释和通路分析,了解这些转录本可能参与的生物学过程和信号通路。 徐汇区嘉安健达二代测序提供单细胞测序也是二代测序。
二代测序的建库步骤③
三、末端修复和加A尾(以DNA文库为例)
末端修复:经过片段化后的DNA末端可能是不平齐的,有5'-突出端或3'-突出端。末端修复反应可以利用T4DNA聚合酶、Klenow片段等酶,将这些末端补平,使其成为平末端。T4DNA聚合酶具有5'→3'聚合酶活性和3'→5'外切酶活性,在合适的反应缓冲液和dNTP(脱氧核糖核苷三磷酸)存在下,可以将突出的末端补平。
加A尾:在末端修复后的平末端DNA分子的3'-末端加上一个A碱基。这一步是为了后续连接带有T-突出端的接头做准备,一般使用Klenow片段(3'→5'外切酶活性缺失)在dATP存在下进行加A反应,这样可以使DNA片段能够高效地与带有T-突出端的测序接头连接。
二代测序技术在不同人群中的准确性有何差异③
孕妇及胎儿
优势:无创产前筛查(NIPT)是二代测序技术用于孕期胎儿常见染色体非整倍体筛查的应用,对于唐氏综合征、18-三体综合征、13-三体综合征等染色体异常疾病的检测准确率分别能达到95%、85%、75%以上,明显高于传统血清学筛查。
局限性:孕妇外周血中胎儿游离DNA来源于胎盘滋养细胞,可能与胎儿实际情况不一致,导致假阳性。母亲若合并免疫疾病、凝血功能障碍等,会使外周血中游离DNA含量过高,掩盖胎儿来源的游离DNA,造成假阴性510. 二代测序与Sanger测序相同吗?
不同二代测序技术平台的速度
Illumina 测序平台:这是目前市场上应用较为***的二代测序平台之一,其测序速度较快。例如 Illumina NovaSeq 系列,一次运行可以在 1-3 天内产生大量的数据,通量可达数亿甚至数十亿条读长,能够满足大规模基因组学研究和临床检测的需求。
Roche 454 测序平台:Roche 454 测序系统的测序速度也较快,其特点是测序片段比较长,高质量的读长能达到 400bp 左右,一次运行可以在 24 小时左右完成对一定数量样本的测序。
BGISEQ 系列:华大智造的 BGISEQ 系列测序仪在速度上也有出色表现,如全球二代测序速度**快设备 E25 量产,为快速测序提供了有力支持 二代测序包括全基因组测序和全外显子测序。湖南嘉安健达二代测序检测
二代测序是为了改进一代测序通量过低的问题而出现的。四川嘉安健达二代测序技术
③二代测序一般多久出结果?
3、测序深度和覆盖度要求
测序深度是指每个碱基被测序的平均次数,覆盖度是指测序获得的碱基占整个基因组(或目标区域)的比例。如果要求高测序深度和高覆盖度,比如进行**全基因组的深度测序(测序深度可能达到100X甚至更高),需要更长的测序时间来获取足够的数据,并且后续的数据处理和分析也会更复杂。而对于一些简单的基因筛查项目,测序深度要求较低(如10X-20X),相应的测序和分析时间会缩短。例如,低深度全外显子测序用于筛查常见突变,测序可能在3-5天完成;而高深度的全外显子测序用于检测低频体细胞突变,可能需要7-10天甚至更久。 四川嘉安健达二代测序技术