液位传感器工作原理:用静压测量,当液位传感器投入到被测液体中某一深度时,传感器迎液面受到的压强公式为:Ρ=ρ.g.H+Po式中:P:变送器迎液面所受压强ρ:被测液体密度g:当地重力加速度Po:液面上大气压H:变送器投入液体的深度同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压Po与传感器的负压腔相连,以抵消传感器背面的Po,使传感器测得压力为:ρ.g.H,显然,通过测取压强P,可以得到液位深度。功能特点:
稳定性好,满度、零位长期稳定性可达0.1%FS/年。在补偿温度0~70℃范围内,温度飘移低于0.1%FS,在整个允许工作温度范围内低于0.3%FS。
具有反向保护、限流保护电路,在安装时正负极接反不会损坏变送器,异常时送器会自动限流在35MA以内。
固态结构,无可动部件,高可靠性,使用寿命长。
安装方便、结构简单、经济耐用。 采购高精度位移传感器请找常州研拓智能,欢迎来电沟通。湖州磁致伸缩位移传感器原理
磁致伸缩液位传感器主要包括三个部件:探针棒、电路体、浮体。在测试过程中,电路元件会在磁致伸缩线上发出一种电流脉冲,它会在磁致伸缩线上形成一个环状磁场。利用磁致伸缩液位计,来测量油罐的液位,具有如下的优势:方便了系统的自动工作:磁致伸缩式液位计的二次仪表,使用了一个标准化的输出信号,方便了微型计算机对信号的处理,方便了网络工作,使整个测试系统更加的自动化。可供选择的安装方法有:水平槽的液面测定:上向下;工艺中段液位控制:侧面安装;在立式油罐上的应用:采用软缆索顶式;与磁翻板式液位仪配合使用;油槽车及其他装置。连云港液位传感器定制采购高精度位移传感器,请找常州研拓智能科技有限公司,我们将竭诚为您服务。。
磁致伸缩液位传感器用途◆电厂:蓄水池、尾气净化罐、油罐等◆油田:原油及成品油储罐、三相分离器、沉降罐、污水罐(池)◆石化:输油管道、蒸馏塔、浓缩罐、液化气罐、氨水罐、炼油厂油库等◆化工:蒸馏塔、氨水罐、有毒液体罐、等◆水和水处理:蓄水池、污水池、水处理罐、沉淀池、消化塔等◆其他:食品、制药、环保、造纸等行业。磁致伸缩液位传感器的特性◆一机多用:可单独或同时测量液面及接触面的位置。◆输出方式:可现场显示,也可遥控信号输出◆低功率:4-20 mA的二线制回路,液晶显示
液位传感器(静压液位计/液位变送器/液位传感器/水位传感器)是一种测量液位的压力传感器。静压投入式液位传感器(液位计)是基于所测液体静压与该液体的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号。液位分为两类:一类为接触式,包括单法兰静压/双法兰差压液位传感器,浮球式液位传感器,磁性液位传感器,投入式液位传感器,电动内浮球液位传感器,电动浮筒液位传感器,电容式液位传感器,磁致伸缩液位传感器,伺服液位传感器等。另一类为非接触式,分为超声波液位传感器,雷达液位传感器等。采购mts位移传感器请找常州研拓智能科技有限公司,欢迎来电。
采用磁致伸缩液位计,进行罐液位的测量,其优点表现在:可靠性强:由于磁致伸缩液位计采用波导原理,无机械可动部分,故无摩擦,无磨损。整个变换器封闭在不锈钢管内,和测量介质非接触,传感器工作可靠,寿命长。精度高:由于磁致伸缩液位计用波导脉冲工作,工作中通过测量起始脉冲和终止脉冲的时间来确定被测位移量,因此测量精度高,分辨率优于0.01%FS,这是用其它传感器难以达到的精度。安全性好:磁致伸缩液位计的防爆性能高,本安防爆,使用安全,特别适合对化工原料和易燃液体的测量。测量时无需开启罐盖,避免人工测量所存在的不安全性。磁致伸缩液位计易于安装和维护简单:磁致伸缩液位仪一般通过罐顶已有管口进行安装,特别适用于地下储罐和已投运储罐的安装,并可在安装过程中不影响正常生产。便于系统自动化工作:磁致伸缩液位计的二次仪表采用标准输出信号,便于微机对信号进行处理,容易实现联网工作,提高整个测量系统的自动化程度。采购浮球液位传感器,请找常州研拓智能,我们将竭诚为您服务。淮安双界面液位传感器品牌
采购浮球液位传感器,请找常州研拓智能,欢迎来电咨询。湖州磁致伸缩位移传感器原理
磁致伸缩液位变送器是一种液位传感器,主要是用于连续测量介质的液位和界面,它内部使用了磁致伸缩操作的原理,并结合现代电子技术来测量脉冲波之间的时间值,以达到准确测量液位的目的。磁致伸缩液位变送器采用波导脉冲工作,在工作过程中,通过测量起始脉冲和结束脉冲的时间来确定所测量的位移,是目前前列的液位测量和控制技术,磁致伸缩液位传感器通常用于油水界面的测量,其他包括酸罐、丙烷容器、脱盐器和污水罐等,磁致伸缩液位变送器由三部分组成:探头杆、电路单元和磁浮子,柔性电缆型和外浮标型是从基本模型衍生而来的,并具有4~20mA、0~5V、0~10V、HART、RS-485等多种通讯方式。湖州磁致伸缩位移传感器原理