本文温所研究的锗膜厚度约300nm,导致其白光干涉输出光谱只有一个干涉峰,此时常规基于相邻干涉峰间距解调的方案(如峰峰值法等)将不再适用。为此,我们提出了一种基于单峰值波长移动的白光干涉测量方案,并设计搭建了膜厚测量系统。温度测量实验结果表明,峰值波长与温度变化之间具有良好的线性关系。利用该测量方案,我们测得实验用锗膜的厚度为338.8nm,实验误差主要来自于温度控制误差和光源波长漂移。通过对纳米级薄膜厚度的测量方案研究,实现了对锗膜和金膜的厚度测量。本文主要的创新点是提出了白光干涉单峰值波长移动的解调方案,并将其应用于极短光程差的测量。白光干涉膜厚仪需要进行校准,并选择合适的标准样品。高速膜厚仪生产厂家哪家好
傅里叶变换是白光频域解调方法中一种低精度的信号解调方法。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纤法布里-珀罗传感器的解调。因此,该解调方案的原理是通过傅里叶变换得到频域的峰值频率从而获得光程差,进而得到待测物理量的信息。傅里叶变换解调方案的优点是解调速度较快,受干扰信号的影响较小。但是其测量精度较低。根据数字信号处理FFT(快速傅里叶变换)理论,若输入光源波长范围为λ1,λ2,则所测光程差的理论小分辨率为λ1λ2/(λ2−λ1),所以此方法主要应用于对解调精度要求不高的场合。傅里叶变换白光干涉法是对傅里叶变换法的改进。该方法总结起来就是对采集到的光谱信号做傅里叶变换,然后滤波、提取主频信号后进行逆傅里叶变换,然后做对数运算,并取其虚部做相位反包裹运算,由获得的相位得到干涉仪的光程差。该方法经过实验证明其测量精度比傅里叶变换高。本地膜厚仪可测量大气压下薄膜厚度在1纳米到1毫米之间。
本文主要以半导体锗和贵金属金两种材料为对象,研究了白光干涉法、表面等离子体共振法和外差干涉法实现纳米级薄膜厚度准确测量的可行性。由于不同材料薄膜的特性不同,所适用的测量方法也不同。半导体锗膜具有折射率高,在通信波段(1550nm附近)不透明的特点,选择采用白光干涉的测量方法;而厚度更薄的金膜的折射率为复数,且能激发明显的表面等离子体效应,因而可借助基于表面等离子体共振的测量方法;为了进一步改善测量的精度,论文还研究了外差干涉测量法,通过引入高精度的相位解调手段,检测P光与S光之间的相位差提升厚度测量的精度。
自上世纪60年代开始,西方的工业生产线广泛应用基于X及β射线、近红外光源开发的在线薄膜测厚系统。随着质检需求的不断增长,20世纪70年代后,电涡流、超声波、电磁电容、晶体振荡等多种膜厚测量技术相继问世。90年代中期,随着离子辅助、离子束溅射、磁控溅射、凝胶溶胶等新型薄膜制备技术的出现,光学检测技术也不断更新迭代,以椭圆偏振法和光度法为主导的高精度、低成本、轻便、高速稳固的光学检测技术迅速占领日用电器和工业生产市场,并发展出了个性化定制产品的能力。对于市场占比较大的微米级薄膜,除了要求测量系统具有百纳米级的测量准确度和分辨率之外,还需要在存在不规则环境干扰的工业现场下具备较高的稳定性和抗干扰能力。白光干涉膜厚仪需要校准,标准样品的选择和使用至关重要。
由于不同性质和形态的薄膜对系统的测量量程和精度的需求不相同,因而多种测量方法各有优缺,难以一概而论。将各测量特点总结所示,按照薄膜厚度的增加,适用的测量方式分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。Michelson干涉仪的光路长度决定了仪器的精度。高速膜厚仪生产厂家哪家好
白光干涉膜厚仪是一种用来测量透明和平行表面薄膜厚度的仪器。高速膜厚仪生产厂家哪家好
薄膜是一种特殊的二维材料,由分子、原子或离子沉积在基底表面形成。近年来,随着材料科学和镀膜技术的不断发展,厚度在纳米量级(几纳米到几百纳米范围内)的薄膜研究和应用迅速增加。与体材料相比,纳米薄膜的尺寸很小,表面积与体积的比值增大,因而表面效应所表现出来的性质非常突出,对于光学性质和电学性质等具有许多独特的表现。纳米薄膜在传统光学领域中的应用越来越广,尤其是在光通讯、光学测量、传感、微电子器件、医学工程等领域有更为广阔的应用前景。高速膜厚仪生产厂家哪家好