膜厚仪基本参数
  • 品牌
  • 创视智能-TronSight
  • 型号
  • TS-IT50
  • 用途类型
  • 薄膜测厚
  • 工作原理
  • 白光干涉型
  • 输出信号
  • 模拟型
  • 材质
  • 金属膜
  • 位移特征
  • 点位移
  • 测量范围
  • 小位移
膜厚仪企业商机

在纳米量级薄膜的各项相关参数中,薄膜材料的厚度是薄膜设计和制备过程中的重要参数,是决定薄膜性质和性能的基本参量之一,它对于薄膜的力学、光学和电磁性能等都有重要的影响[3]。但是由于纳米量级薄膜的极小尺寸及其突出的表面效应,使得对其厚度的准确测量变得困难。经过众多科研技术人员的探索和研究,新的薄膜厚度测量理论和测量技术不断涌现,测量方法实现了从手动到自动,有损到无损测量。由于待测薄膜材料的性质不同,其适用的厚度测量方案也不尽相同。对于厚度在纳米量级的薄膜,利用光学原理的测量技术应用。相比于其他方法,光学测量方法因为具有精度高,速度快,无损测量等优势而成为主要的检测手段。其中具有代表性的测量方法有干涉法,光谱法,椭圆偏振法,棱镜耦合法等。可以配合不同的软件进行分析和数据处理,例如建立数据库、统计数据等 。高精度膜厚仪品牌企业

薄膜材料的厚度在纳米级薄膜的各项相关参数中,是制备和设计中一个重要的参量,也是决定薄膜性质和性能的关键参量之一。然而,由于其极小尺寸及表面效应的影响,纳米级薄膜的厚度准确测量变得困难。科研技术人员通过不断的探索研究,提出了新的薄膜厚度测量理论和技术,并将测量方法从手动到自动、有损到无损等不断改进。对于不同性质的薄膜,其适用的厚度测量方案也不相同。在纳米级薄膜中,采用光学原理的测量技术可以实现精度高、速度快、无损测量等优点,成为主要的检测手段。典型的测量方法包括椭圆偏振法、干涉法、光谱法、棱镜耦合法等。防护膜厚仪常见问题白光干涉膜厚仪的应用非常广,特别是在半导体、光学、电子和化学等领域。

白光干涉的相干原理早在1975年就已经被提出 ,随后于1976年在光纤通信领域中获得了实现。1983年,BrianCulshaw的研究小组报道了白光干涉技术在光纤传感领域中的应用。随后在1984年,报道了基于白光干涉原理的完整的位移传感系统。该研究成果证明了白光干涉技术可以被用于测量能够转换成位移的物理参量。此后的几年间,白光干涉应用于温度、压力等的研究相继被报道。自上世纪九十年代以来,白光干涉技术快速发展,提供了实现测量的更多的解决方案。近几年以来,由于传感器设计与研制的进步,信号处理新方案的提出,以及传感器的多路复用[39]等技术的发展,使得白光干涉测量技术的发展更加迅速。

在初始相位为零的情况下,当被测光与参考光之间的光程差为零时,光强度将达到最大值。为了探测两个光束之间的零光程差位置,需要使用精密Z向运动台带动干涉镜头作垂直扫描运动,或移动载物台。在垂直扫描过程中,可以用探测器记录下干涉光强,得到白光干涉信号强度与Z向扫描位置(两光束光程差)之间的变化曲线。通过干涉图像序列中某波长处的白光信号强度随光程差变化的示意图,可以找到光强极大值位置,即为零光程差位置。通过精确确定零光程差位置,可以实现样品表面相对位移的精密测量。同时,通过确定最大值对应的Z向位置,也可以获得被测样品表面的三维高度。白光干涉膜厚测量技术可以实现对薄膜的在线检测和控制。

常用白光垂直扫描干涉系统的原理 :入射的白光光束通过半反半透镜进入到显微干涉物镜后,被分光镜分成两部分,一个部分入射到固定的参考镜,一部分入射到样品表面,当参考镜表面和样品表面的反射光通过分光镜后,再次汇聚发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)可探测整个视场内双白光光束的干涉图像。利用Z向精密位移台带动干涉镜头或样品台Z向扫描,可获得一系列的干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,由CCD图像中每个像素点光强最大值对应的Z向位置获得被测样品表面的三维形貌。白光干涉膜厚测量技术可以应用于电子工业中的薄膜电阻率测量;微米级膜厚仪厂家供应

白光干涉膜厚测量技术可以实现对薄膜的非接触式测量。高精度膜厚仪品牌企业

光谱法是一种以光的干涉效应为基础的薄膜厚度测量方法,分为反射法和透射法两种类型。入射光在薄膜-基底-薄膜界面上的反射和透射会引起多光束干涉效应,不同特性的薄膜材料的反射率和透过率曲线是不同的,并且在全光谱范围内与厚度一一对应。因此,可以根据这种光谱特性来确定薄膜的厚度和光学参数。光谱法的优点是可以同时测量多个参数,并能有效地排除解的多值性,测量范围广,是一种无损测量技术。其缺点是对样品薄膜表面条件的依赖性强,测量稳定性较差,因此测量精度不高,对于不同材料的薄膜需要使用不同波段的光源等。目前,这种方法主要用于有机薄膜的厚度测量。高精度膜厚仪品牌企业

与膜厚仪相关的**
信息来源于互联网 本站不为信息真实性负责