微型机械式惯导传感器将统治战术性能要求(或以下)的应用领域。凌思市场将推动这些传感器的发展,如适用灵巧飞行器、自主导航导弹、短程战术导弹导航、火力控制系统、雷达天线的运动补偿、复合智能小型推进器和晶片大小的INS/GPS系统。洲际弹道导弹系统和潜射弹道导弹系统战略制导系统的发展,将依赖于武器系统和战略系统的总体性能要求。导航系统为提高导航精度,将继续采用稳定平台式机械陀螺仪和加速度计(摆式陀螺加速度计)。先进的惯性导航系统,就选凌思科技,用户的信赖之选,有想法可以来我司参观了解!青岛LINS688惯性导航IMU
IMU零偏即IMU传感器零偏,是指IMU器件在静止状态下仍然存在的输出值,这个值是固定的,不会随时间变化。在实际使用中,零偏可以通过一些方法进行补偿,例如在初始启动过程中利用几秒钟的静态数据求平均即可扣掉大部分。 IMU零偏包括常值零偏、全温零偏误差、零偏重复性和零偏不稳定性等类型。常值零偏是指IMU器件生产出来后就不变化的一个值,好的器件在出厂前会进行标定,而便宜的器件则需要用户自行标定。全温零偏误差是指陀螺零偏在其额定工作范围内相对于室温零偏值的变化量,这种缓慢变化的零偏在跟GNSS组合导航中是可以被很快估计和补偿的。零偏重复性是指惯性器件不同次上电运行时的零偏的不重复程度,遇到这种情况,应该把器件进行彻底老化,保证数据输出的稳定性。零偏不稳定性反映器件上电稳定后其零偏随时间变化的情况,根据具体测算方法又分为两种,一种是我国的国军标定义的零偏不稳定性,另一种是Allan方差给出的零偏不稳定性。武汉LINS354惯性导航模块价格先进的惯性导航系统,就选凌思科技,用户的信赖之选,有想法的不要错过哦!
为了得到飞行器的位置数据,须对惯性导航系统每个测量通道的输出积分。陀螺仪的漂移将使测角误差随时间成正比地增大,而加速度计的常值误差又将引起与时间平方成正比的位置误差。这是一种发散的误差(随时间不断增大),可通过组成舒拉回路、陀螺罗盘回路和傅科回路 3个负反馈回路的方法来修正这种误差以获得准确的位置数据。 舒拉回路、陀螺罗盘回路和傅科回路都具有无阻尼周期振荡的特性。所以惯性导航系统常与无线电、多普勒和天文等导航系统组合,构成高精度的组合导航系统,使系统既有阻尼又能修正误差。 惯性导航系统的导航精度与地球参数的精度密切相关。高精度的惯性导航系统须用参考椭球来提供地球形状和重力的参数。由于地壳密度不均匀、地形变化等因素,地球各点的参数实际值与参考椭球求得的计算值之间往往有差异,并且这种差异还带有随机性,这种现象称为重力异常。正在研制的重力梯度仪能够对重力场进行实时测量,提供地球参数,解决重力异常问题。
惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。3个自由度陀螺仪用来测量飞行器的三个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数,实现功能。按照惯性导航组合在飞行器上的安装方式,可分为平台式惯性导航系统(惯性导航组合安装在惯性平台的台体上)和捷联式惯性导航系统(惯性导航组合直接安装在飞行器上)凌思科技是一家专业提供先进的惯性导航系统的公司,有想法的可以来电购买先进的惯性导航系统!
市面上的IMU,虽然采用多个惯导计算单元(磁力计、加速度计,陀螺仪)融合提升精度,但首先我们需要了解各测量单元存在的影响: 加速度计存在累积误差,z轴由于重力加速度,无法获取z轴旋转角。 陀螺仪存在零点漂移(初始状态传感器有值,解决方案:上电时静置状态,减去零偏),并且受温度影响。 磁力计可校准z轴角度,但容易受磁场影响。 在选型时尽量选择误差较小的IMU,但难免由于成本,选择档次的消费级IMU,而不同厂家的IMU质量差异很大,误差校准方式各有不同,姿态估计不准确。故在使用时建议: 使用联合磁力计的9轴方案,角度会更可靠,测量yaw角时与指南针相当(凌思姿态)。 使用过程中尽量保证环境中不受磁场干扰,包括铁钴镍材质,以及环境中强电现象。(实验中发现磁场影响很大,角度完全不对)凌思科技为您提供先进的惯性导航系统,有需要可以联系我司哦!山东LINS354惯性导航单元价格
凌思科技致力于提供先进的惯性导航系统,有需要可以联系我司哦!青岛LINS688惯性导航IMU
根据所用陀螺仪的不同,惯性导航系统分为速率型捷联式惯性导航系统和位置型捷联式惯性导航系统。 前者用速率陀螺仪,输出瞬时平均角速度矢量信号;后者用自由陀螺仪,输出角位移信号。 捷联式惯性导航系统省去了平台,所以结构简单、体积小、维护方便,但陀螺仪和加速度计直接装在飞行器上,工作条件不佳,会降低仪表的精度。这种系统的加速度计输出的是机体坐标系的加速度分量,需要经计算机转换成导航坐标系的加速度分量,计算量较大。青岛LINS688惯性导航IMU