多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

1,光源、光路高度整合通过精密的设计,将飞秒激光器、扫描振镜、PMT、滤光片组,甚至是单光子荧光光路全套整合在一个不大的扫描头内,无论扫描头如何移动,扫描头内的光路都可以保持稳定不变,从而实现了超稳定、免维护的特点。2,配合多维度、高精度机械控制系统。扫描头直接架设在一个多维运动的机械装置上,可沿任意方向和角度移动扫描头,方便对动物样本进行多方位的扫描观察。而这在常规方案的多光子显微镜上有很大的实现难度,不但需要多个关节组合的光路导向机构,并且在这些关节旋转的时候,都冒着极大的光路偏移的风险,以至于在使用一段时间后都需要对光路进行再次校准,而这样的问题在我司上则完全不会发生。3.一机多能。利用多光子显微镜的光遗传学操作能力,我们可以对某类神经元的ji活和失活进行高精度的操作。美国清醒动物多光子显微镜代理商

美国清醒动物多光子显微镜代理商,多光子显微镜

SternandJeanMarx在评论中说:祖家能够在更为精细的层次研究树突的功能,这在以前是完全不可能的。新的技术(如脑片的膜片钳和双光子显微使人们对树突的计算和神经信号处理中的作用有了更好的理解。他们解释了是树突模式和形状多样性,及其独特的电、及其独特的电化学特征使神经元完成了一系列的专门任务。双光子与共聚焦在发育生物学中的应用双光子∶每2.5分钟扫描一次,观察24小时,发育到桑椹胚和胚泡阶段共聚焦∶每15分钟扫描一次,观察8小时后细胞分裂停止,不能发育到桑椹胚和胚泡阶段共聚焦激发时的细胞存活率为多光子系统的10~20%。美国全自动多光子显微镜实验操作多光子显微镜是一款针对厚样本进行深层成像的利器,特别是在实验中。

美国清醒动物多光子显微镜代理商,多光子显微镜

基于多光子显微镜的神经成像技术原理:多光子显微镜可用于深度成像和三维成像,因此可用于拍摄不透明的厚样品。目前主要使用的多光子显微镜包括双光子显微镜和三光子显微镜。双光子显微镜的结构与共焦类似,区别在于:1)双光子显微镜的激发光波长比共焦长,能量较低,但穿透能力较强;2)双光子显微镜没有小孔,提高了检测效率;3)双光子显微镜成像深度较快提高。那么,为什么双光子能具有共焦显微镜所没有的优势呢?原因是它采用双光子激发方式。使用波长较长的激发光子,光子的能量较低,因此电子需要吸收两个这样的激发光子才能达到激发态,从而释放出一个荧光光子。因此,荧光信号的强度与光强的平方成正比。因为焦点处的光强较大,只能在焦点处激发荧光。波长越长,穿透力越强,因此双光子显微镜的成像深度大于共焦显微镜。由于两个光子只在焦点激发荧光,不需要小孔,而是将所有的荧光都收集起来,提高了检测效率。三光子显微镜的原理类似于双光子显微镜,利用三个激发光子可以实现更深的成像深度。由于使用了更长的激发波长,穿透能力更强,成像深度更大。此外,由于较强的非线性效应,荧光信号的强度与光强的立方成正比,因此比双光子具有更低的非聚焦激发和背景噪声。

通过添加FACED模块,可以将基于标准振镜的现有2PM轻松转换为千赫兹成像系统。FACED双光子荧光显微镜遵循光栅扫描,需要很少的计算处理,在稀疏或密集的标记样本中均可以使用,并且不受串扰的影响,而且对整个图像平面采样后可以进行运动校正。实验中没有观察到光损伤的迹象,此外,子脉冲延迟到达相同的样品位置,能为荧光团提供充足的时间使其从易于破坏的暗态返回到基态,可以明显减少光漂白。使用现有的传感器,FACED双光子荧光显微镜可以提供足够的速度和灵敏度来检测神经元过程中的钙瞬变和谷氨酸瞬变,以及来自细胞体的尖峰和亚阈值电压。该组使用基于FACED的2PM显微镜,在小鼠大脑中实现了千赫兹速率的神经活动成像。在物镜平均激光功率为10-85mW下,他们测量了清醒小鼠中V1神经元的自发性和感觉诱发性的超阈值和亚阈值电位活动。OCT可以用于损伤修复监测。Yeh等用OCT、多光子显微镜。

美国清醒动物多光子显微镜代理商,多光子显微镜

单束扫描技术可以高速遍历大视场(FOV)的神经组织:使用MPM对神经元进行成像时,通过随机访问扫描—即激光束在整个视场上的任意选定点上进行快速扫描—可以只扫描感兴趣的神经元,这样不仅避免扫描到任何未标记的神经纤维,还可以优化激光束的扫描时间。随机访问扫描(图1)可以通过声光偏转器(AOD)来实现,其原理是将具有一个射频信号的压电传感器粘在合适的晶体上,所产生的声波引起周期性的折射率光栅,激光束通过光栅时发生衍射。通过射频电信号调控声波的强度和频率从而可以改变衍射光的强度和方向,这样使用1个AOD就可以实现一维横向的任意点扫描,利用1对AOD,结合其他轴向扫描技术可实现3D的随机访问扫描。但是该技术对样本的运动很敏感,易出现运动伪影。目前,快速光栅扫描即在FOV中进行逐行扫描,由于利用算法可以轻松解决运动伪影而被普遍的使用。多光子显微镜是一种用于生物学领域的分析仪器。美国荧光多光子显微镜实验

精确观测生物分子相互作用,多光子显微镜推动生命科学研究发展。美国清醒动物多光子显微镜代理商

对于双光子成像而言,离焦和近表面荧光激发是两个比较大的深度限制因素,而对于三光子成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面比2P要小得多,所以需要更高数量级的脉冲能量才能获得与2P激发的相同强度的荧光信号。功能性3P显微镜比结构性3P显微镜的要求更高,它需要更快速的扫描,以便及时采样神经元活动;需要更高的脉冲能量,以便在每个像素停留时间内收集足够的信号。复杂的行为通常涉及到大型的大脑神经网络,该网络既具有局部的连接又具有远程的连接。要想将神经元活动与行为联系起来,需要同时监控非常庞大且分布普遍的神经元的活动,大脑中的神经网络会在几十毫秒内处理传入的刺激,要想了解这种快速的神经元动力学,就需要MPM具备对神经元进行快速成像的能力。快速MPM方法可分为单束扫描技术和多束扫描技术。美国清醒动物多光子显微镜代理商

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责