钙成像基本参数
  • 品牌
  • Inscopix
  • 型号
  • 齐全
  • 产地
  • 上海
  • 是否定制
钙成像企业商机

细胞内钙离子作为重要的信号分子其作用具有时间性和空间性。当个细胞兴奋时,产生了一个电冲动,此时,细胞外的钙离子流入该细胞内,促使该细胞分泌神经递质,神经递质与相邻的下一级神经细胞膜上的蛋白分子结合,促使这一级神经细胞产生新的电冲动。以此类推,神经信号便一级一级地传递下去,从而构成复杂的信号体系,较终形成学习、记忆等大脑的高级功能。在哺乳动物神经系统中,钙离子同样扮演着重要的信号分子的角色。静息状态下大部分神经元细胞内钙离子浓度约为50-100nM,而细胞兴奋时钙离子浓度能瞬间上升10-100倍,增加的钙离子对于突触囊泡胞吐释放神经递质的过程必不可少。众所周知,只有游离钙才具有生物学活性,而细胞质内钙离子浓度由钙离子的内外流平衡所决定,同时也受钙结合蛋白的影响。细胞外钙离子内流的方式有很多种,其中包括电压门控钙离子通道、离子型谷氨酰胺受体、烟碱型胆碱能受体(nAChR)和瞬时受体电位C型通道(TRPC)等。专业的钙成像显微镜使得钙成像变的直接。深圳神经细胞钙成像nVoke

深圳神经细胞钙成像nVoke,钙成像

紫外光激发Ca2+荧光探针Fura-2和Indo-1都是紫外光激发的双波长Ca2+荧光指示剂,也是目前较常用的比率型钙离子荧光探针。与其他代的荧光指示剂相比,它们的荧光信号更强,对Ca2+的选择性也更强。比率指示剂会在与Ca2+结合后会改变吸收/发射特性。以双波长激发指示剂Fura-2为例。如图2所示,低Ca2+浓度下,Fura-2在~380nm处激发,高Ca2+浓度下,在~340nm处激发。光谱由两个峰组成:左侧较短波长的吸收峰随Ca2+浓度的增加而增大,右侧较长波长的吸收峰随Ca2+浓度的增加而减小。通过340/380nm交替激发,获取在510nm处对应的发射光荧光强度的比率,就可以对Ca2+浓度进行定量的测量。因为Fura-2结果准确,且不易被漂白,所以得到了普遍使用。美国钙成像参考价钙成像技术能直接测量神经元和神经元组织中动态的钙流动。

深圳神经细胞钙成像nVoke,钙成像

麻省理工学院和波士顿大学的研究人员近研究使用一种荧光探针,能够在大脑细胞处于电活动状态时点亮,可以立即对小鼠大脑中多个神经元的活动进行成像。麻省理工学院的脑科学和认知科学神经技术教授、兼生物工程学教授EdwardBoyden表示,只需要使用简单的光学显微镜,即可实现这项技术。神经科学家可以将大脑内电路的活动进行可视化,并将其与特定行为联系起来。“如果想研究一种行为或疾病,就需要对神经元群体的活动进行成像,让这些神经元群网络中协同工作。”Boyden说。

与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整在体大脑深处神经的了解与认识。2019年,JeromeLecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度比较好的方法是用更长的波长作为激发光。用标准行为测定法进行成像和行为实验的时间同步可进行深部脑区钙成像。

深圳神经细胞钙成像nVoke,钙成像

霍华德休斯顿医学研究所(HHMI)ScottSternson课题组研究了影响这种源源不断的食欲的神经机制。他们通过使用Inscopix小显微镜观察小鼠脑干区域的神经元,发现贪念美食的小鼠可能是因为特殊的大脑区域对美食和奶茶比其他小鼠更加敏感。本能会驱使我们在感到饥饿和干渴的时候寻找食物,在找到食物或水时通过眼睛看、鼻子闻、嘴巴尝等方式来感受和决定要不要吃,吃到一定程度产生满足感(或是吃了还想吃的不满足感)。因此,要把大脑中汇集的关于吃喝的各类信号分清楚,并找出控制不同吃喝行为的神经环路无疑是很有挑战的任务。ScottSternson博士的研究团队在小鼠大脑中寻找饥饿和干渴神经环路共存的脑区。他们注意到,脑干的蓝斑区(locuscoeruleus)附近有一群谷氨酸能神经元(被称为periLC神经元),参与进食和饮水的行为,是饿和渴的汇聚点。为了研究这些神经细胞的功能,研究小组开发了一种技术,可以让小鼠在自由活动的同时,通过Inscopix自由活动钙成像显微镜观察记录脑干中periLC神经元的活动。这项研究的作者龚蓉博士表示,解决这个技术是此项研究的关键。钙成像系统集成自动控制和精确计时的多模式输入端口。宁波钙成像什么价格

传统的钙成像技术受限于显微镜的视野,只能对很小的一片区域进行记录。深圳神经细胞钙成像nVoke

双光子显微成像技术是近些年发展起来的结合了共聚焦激光扫描显微镜和双光子激发技术的一种新型非线性光学成像方法,采用长波激发,能对组织进行深层次成像。常用的比较好激发波长大多位于800-900nm,而水、血液和固有组织发色团对这个波段的光吸收率低,此外散射的激发光子不能激发样品,因此背景第,光损伤小,适用于在体检测。双光子荧光成像技术能准确定位细胞内置入的微电极位置,从而观察胞体、树突甚至单个树突棘的活性。研究者可完整的观察神经组织的gaofen辨荧光图像,甚至可以分辨神经细胞单个树突棘中的钙分布。深圳神经细胞钙成像nVoke

与钙成像相关的**
信息来源于互联网 本站不为信息真实性负责