相关标准2.1GB/T7354高电压试验技术局部放电测量;2.2GB/T20833.1旋转电机定子绕组绝缘第1部分:离线局部放电测量;2.3GB/T20833.2旋转电机定子绕组绝缘第2部分:在线局部放电测量;2.4DL/T417电力设备局部放电现场测量导则;2.5DL/T846.4高电压测试设备通用技术条件第4部分:脉冲电流法局部放电测量仪;2.6DL/T846.10高电压测试设备通用技术条件第10部分:暂态地电压局部放电检测仪;2.7DL/T846.11高电压测试设备通用技术条件第11部分:特高频局部放电检测仪;2.8DL/T1250气体绝缘金属封闭开关设备带电超声局部放电检测应用导则;2.9DL/T1416超声波法局部放电测试仪通用技术条件;2.10DL/T1630气体绝缘金属封闭开关设备局部放电特高频检测技术规范;2.11T/CES114-2022《智能型特高频局部放电在线监测装置技术规范》;2.12Q/GDW11059.1超声波法局部放电带电检测技术现场应用导则;2.13Q/GDW11400电力设备高频局部放电带电检测技术现场应用导则;什么是非侵入式在线 局放 测试?震荡波局部放电检测背景
传统的局部放电监测仪,其测量信号的响应频率一般不超过1MHz,易受外界干扰的影响,稳定性差,影响了其应用。随着计算机技术、电子技术和传感器技术的进步,为特高频监测技术创造了条件,使其具有监测频率高、抗干扰性强和灵敏度高,得到高度重视。GZPD系列手持式多功能局部放电监测仪,可以根据需求定制1~4通道并配置有1~5种传感器,配置情况如下:1、AE、UHF和HF法适用于变压器/电抗器/高压电缆(终端为GIS时可用AE、UHF监测)的局部放电监测;2、AE/AA、HF和TEV法适用于对开关柜/环网柜的局部放电监测;3、AE和UHF适用于对GIS、HGIS、GIL的局部放电进行监测。内置的**诊断系统能根据监测数据进行分析,判断放电能量大小和可能部位,在电力系统得到广泛应用。超高频局部放电接地箱震荡波局部放电监测技术。
基于局部放电(的电力设备绝缘状态评估方法主要包括以下几个步骤:局部放电检测:首先需要使用合适的局部放电检测技术来获取电力设备的放电信号。常用的检测方法包括电气法、超声波法、UHF法、光学法等。信号采集与处理:将检测到的放电信号进行放大、滤波和数字化处理,以便于后续分析。信号处理的目的是提取有用的信息,如放电脉冲的幅度、相位、波形特征、重复频率等。特征参数提取:从处理后的信号中提取**局部放电特性的参数,如总放电量(PDP)、电荷量、能量释放速率等。这些参数有助于描述绝缘状态的严重程度。数据分析与建模:利用统计分析、机器学习或人工智能算法对提取出的特征参数进行深入分析。建立绝缘状态评估模型,如PD与设备寿命的关系模型、PD与绝缘老化的关联模型等。绝缘等级判定:根据分析结果,结合设备的运行历史和维护记录,对电力设备的绝缘状态进行等级划分。常见的绝缘等级有良好、关注、不良和危险等。预防性维护建议:根据绝缘状态评估的结果,提出相应的预防性维护措施和建议,如更换绝缘材料、清理表面污染、调整运行参数等。跟踪监测:对已评估的电力设备进行定期或连续的局部放电监测,以跟踪其绝缘状态的变化,并及时调整维护计划。
GZPD-4D系统的功能特点(上)1.满足国标GB50150-2016《电气装置安装工程电气设备交接试验标准》对电力电缆线路试验要求2.满足国网企标Q/GDW11316《电力电缆线路试验规程》技术要求3.适用于高压电缆的耐压试验同步、在线运行状态下短期的局部放电监测与评价。4.高性能采集单元的采样率高达200MS/s,采样带宽高达100MHz,分辨率达16bit,支持电缆局部放电三相同测,具备边缘计算功能,实时传输原始数据及本地分析结果。5.传输方式灵活:具备光纤有线及WIFI、4G/5G无线等通讯模式,满足电缆隧道内部监测需求,大幅降低人力成本,提高监测效率。6.基于GB/T7354-2018及IEC60270-2010标准的局部放电监测技术,监测灵敏度优于5pC。7.采集单元、通讯单元内置可充电电池并采用低功耗设计,可连续工作8小时以上,方便户外使用;也可外接充电宝或220V/AC。8.支持脉冲波形、波形频谱、PRPD图谱、TF-Map、3-PARD(三相幅值相关法的英文简称)、放电基本参数(放电幅值、相位、频次等)的实时显示。局部放电可能发生在固体绝缘材料(纸、聚合物等)的空隙中。
长期以来,进行变压器/电抗器OLTC的测试一直采用直流方法测试,所获取的波形与OLTC制造商例行测试波形进行比对,对OLTC现场测试起到了一定作用。由于OLTC制造商在车间例行测试是对裸开关进行测试,现场是变压器带绕组进行的测试,两者差异很大。直流方法测试受测试技术方法和技术能力限制,现场OLTC测试有时会出现波形无法判读等问题,各方面工程技术人员争议很大,表现在以下几个方面:2.2.1直流测试法*适用于绕组中性点处并有中性点抽出的OLTC测试,对绕组中性点以外其它位置(线端、中部等)处的OLTC及单相变压器OLTC不能测试。2.2.2直流测试由于其测试原理、技术能力等原因,有时测试获取的波形与制造商给出的波形差异较大,无法给出准确分析结论,OLTC反复吊出检查与测试,影响新设备、大修后设备投运。为防止OLTC事故,甚至将无法判定OLTC是否存在缺陷的变压器改做无载调压变压器运行。2.2.3部分直流测试波形异常无法判定OLTC动作特性正常,以制造商质量承诺投入运行,不能保证OLTC的安全运行。2.2.4变压器设计上新技术采用,以及电抗式、真空断路器式等的OLTC使用,直流测试方法无法完全满足现场测试需要。2.3交流测试法的特点GZPD-4D系列分布式局部放电监测与评价系统校准报告。正规局部放电检测机构
局部放电控制的重要性是什么?震荡波局部放电检测背景
局部放电
电力设备健康监测的关键指标在电力系统中,局部放电(PartialDischarge,PD)是指在高压电场作用下,绝缘材料内部或表面局部区域出现的放电现象。它往往是电力设备绝缘劣化的早期信号,对电力系统的安全运行构成潜在威胁。因此,局部放电检测与分析,已成为电力设备健康监测和故障预警的重要手段。
局部放电检测技术的革新与发展
随着科技的进步,局部放电检测技术也在不断创新。从**初的脉冲电流法(PC法)到超声波检测、特高频(UHF)检测等,每一种技术都有其独特的优势和适用场景。这些技术的发展,使得局部放电的检测更加精细、高效,为电力设备的维护与管理提供了有力支持。 震荡波局部放电检测背景