双光子显微镜基本参数
  • 品牌
  • bruker
  • 型号
  • 齐全
  • 可售卖地
  • 全国
  • 配送方式
  • 空运
双光子显微镜企业商机

配合双光子激发技术,激光共聚扫描显微镜则能更好得发挥功效。那么,什么是双光子激发技术呢?在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子使电子跃迁到较高能级,经过一个很短的时间后,电子再跃迁回低能级同时放出一个波长为长波长一半的光子(P=h/λ)。利用这个原理,便诞生了双光子激发技术。双光子显微镜使用长波长脉冲激光,通过物镜汇聚,由于双光子激发需要很高的光子密度,而物镜焦点处的光子密度是比较高的,所以只有在焦点处才能发生双光子激发,产生荧光,该点产生的荧光再穿过物镜,被光探头接收,从而达到逐点扫描的效果。双光子显微镜不需要共聚焦细孔,提高了荧光检测效率。国外布鲁克双光子显微镜光损伤

国外布鲁克双光子显微镜光损伤,双光子显微镜

TOPTICAFemtoFiberultra920超快光纤激光器是一种易于操作和免维护的激光系统其输出波长为920nm,非常适合常规荧光基团(如GFP、eGFP、曙红、GCaMP、CFP、钙黄绿素或金星)的双光子激发。它可以为荧光基团提供相对较高的峰值功率,常用于神经科学和其他与激光相关的光子学。此外,其独特的设计(简单和经济的光源)具有创新双光子荧光显微镜发展的潜力。在双光子显微镜中,峰值功率就是亮度!如果你想获得更好的图像亮度,那么你需要短脉冲,高功率,更重要的是,干净的时间脉冲形状。FemtoFiberultra920具有足够高的输出功率、短脉冲、独特的Clean-Pulse技术和相对较高的峰值功率,这使得在双光子显微镜中实现****亮度而无需对样品进行不必要的加热成为可能。FemtoFiberultra920全包式、完全集成的色散补偿(可确保样品处的短脉冲)、内置电源控制、直观的操作及其坚固紧凑的设计使系统具有非常友好的用户体验,是非线性显微镜应用的良好解决方案。例如,荧光蛋白的双光子激发和基于SHG的对比机制ultima双光子显微镜多少钱成像平台倒置双光子显微镜启用显微镜自带调焦设备。

国外布鲁克双光子显微镜光损伤,双光子显微镜

首先,双光子成像采用波长范围约在700~1000 nm的近红外光激发,在组织中的散射系数较小,穿透性很好,因此非常适合厚样本的观察。同时,由于是近红外光激发,也能避免样品中激发波长较短的自发荧光物质的干扰,可获得较强的荧光信号(如下图)。所以双光子成像具有较深的穿透力和较小的光毒性。通常在活物脑组织中双光子显微镜有效成像深度可达200~500 μm,能够较好地进行三维成像。双光子成像的另一大优势在于精确的空间点聚焦性。一般条件下,物质只会被单光子激发,只有在光子密度足够高的情况下,物质才会吸收两个光子从而被激发,所以,双光子只会在光子密度蕞高的物镜焦点附近发生,很少产生焦平面外的杂散光(如下图)。这种性质既提高了成像质量,也降低了样本的光漂白、光损伤区域。基于这些优势,使得双光子显微镜非常适合对活细胞、活组织进行长时间在体成像。

随着技术的发展,双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。要想让激发激光进入更深的层面,大致可从两个方面入手,装置优化与标本改造。关于装置优化,我们可以把激光束变得更细,使能量更加集中,就能让激光穿透更深。关于标本,其中影响光传播的主要是物质吸收和散射,解决这个问题,我们需要对样本进行透明化处理。一种方法是运用某种物质将标本浸泡,使其中的物质(主要是脂质)被破坏或溶解。另一种方法是运用电泳将脂质电解,让标本“透明度”提高。微型双光子显微镜的优势是。

国外布鲁克双光子显微镜光损伤,双光子显微镜

由于具有较高输出功率的光源可以提高成像速度,在我们的实验中,时间分辨率主要是受OPO输出可见光激光功率的限制。尽管在单点扫描系统中,v2PE激发会使得空间分辨率提高,但多聚焦v2PE显微镜具有与1PE多聚焦显微镜近乎相同的横向分辨率,这主要是多聚焦成像和单点扫描技术之间的差异造成的。由于v2PE的激发体积小于1PE,引入图像扫描技术可以进一步提高空间分辨率,这种技术需要通过在阵列前引入额外的微透镜阵列来实现。除此之外,由于可见光区域的共振效应,可能会产生光漂白,因而为了延长观察时间,系统还需要对激发强度和曝光时间做进一步优化。于双光子激发需要两个光子同时到达,因此只有在焦点附近的样品区域才会激发,从而实现三维成像和高分辨率。进口2PPLUS双光子显微镜作用

双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。国外布鲁克双光子显微镜光损伤

使用基因编码的荧光探针可以在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。使用双光子显微镜(2PM)可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且只是于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要较提高2PM的成像速率。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,国外布鲁克双光子显微镜光损伤

与双光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责