激光增材制造(LAM)属于以激光为能量源的增材制造技术,能够彻底改变传统金属零件的加工模式,主要分为以粉床铺粉为技术特征的激光选区熔化(SLM)、以同步送粉为技术特征的激光直接沉积(LDMD)。目前LAM技术在航空、航天和医疗领域的应用发展特别迅速。鉴于相关领域主要涉及金属结构制造,我们重点开展金属LAM技术的发展研究。随着金属零件使用性能和结构复杂程度的提高,采用铸造、锻造等传统工艺实施制造的难度、成本和周期迅速增加,而兼具技术先进性和资源经济性的LAM技术为高性能、复杂结构制造提供了新型解决方案:实现拓扑优化结构、点阵结构、梯度材料结构、复杂内部流道结构等不再困难,结构功能一体化、轻量化、韧性非常强、耐极端载荷、强散热等新型结构得以应用,相应结构效能大幅提高。例如,美国通用电气公司(GE)SLM航空发动机燃油喷嘴、北京航空航天大学LDMD飞机钛合金框是典型应用案例。走进Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司学习增材制造技术。上海实验室增材制造激光直写
为了制作由3D工程细胞微环境制成的体外细胞培养物,科学家们利用双光子聚合技术(2PP)来制造模拟脑血管几何形状的仿生3D支架,该仿生几何结构影响胶质母细胞瘤细胞及其定植机制。在该实验中,细胞可以在定制3D支架几何结构的引导下以受控方式生长。只有在强聚焦的激光焦点处才能发生双光子吸收的光聚合反应可实现在亚微米范围内打印极其精细的3D特征结构。此外,这种增材制造技术可在微米级别实现高度三维设计自由度,并以比较高精度模拟三维细胞微环境。天津微流道增材制造Quantum X shape增材制造技术是一种三维实体快速自由成形制造新技术。
QuantumXshape是Nanoscribe推出的全新高精度3D打印系统,用于快速原型制作和晶圆级批量生产,以充分挖掘3D微纳加工在科研和工业生产领域的潜力。该系统是基于双光子聚合技术(2PP)的专业激光直写系统,可为亚微米精度的2.5D和3D物体的微纳加工提供极高的设计自由度。QuantumXshape可实现在6英寸的晶圆片上进行高精度3D微纳加工。这种效率的提升对于晶圆级批量生产尤其重要,这对于科研和工业生产领域应用有着重大意义。它作为理想的快速成型制作工具,可实现通过简单工作流程进行高精度和高设计自由度的制作。作为2019年推出的头一台双光子灰度光刻(2GL®)系统QuantumX的同系列产品,QuantumXshape提升了3D微纳加工能力,即完美平衡精度和速度以实现高精度增材制造,以达到高水平的生产力和打印质量。总而言之,工业级QuantumX打印系统系列提供了从纳米到中观尺寸结构的非常先进的微制造工艺,适用于晶圆级批量加工。
人们还可以用3D打印创作出精美的珠宝首饰和设计,甚至可以用这项技术做出巨大的艺术雕塑。Nanoscribe公司专注于微观3D打印技术,通过该用户可以得到尺寸微小的高质量产品。全新推出的QuantumX平台新型超高速无掩模光刻技术主要是基于Nanoscribe双光子灰度光刻技术(2GL®)。该技术将灰度光刻的***性能与双光子聚合的精确性和灵活性完美结合,使其同时具备高速打印,完全设计自由度和超高精度的特点。从而满足了**复杂增材制造对于优异形状精度和光滑表面的极高要求。这种具有创新性的增材制造工艺缩短了企业的设计迭代,打印样品结构既可以用作技术验证原型,也可以用作工业生产上的加工模具。增材制造技术正在改变产品的设计和生产方式。
增材制造技术能够简化光学器件的制造流程,缩短交货期并降低材料消耗。更重要的是,增材制造技术能够实现功能集成的优化设计方案,尤其在卫星光学系统制造领域,增材制造技术能够满足用户对轻型光学系统不断增长的需求,并实现下一代高附加值光学器件的制造。通过增材制造技术开发的下一代光学仪器中,将越来越多采用紧凑的功能集成设计,如集成隔热,冷却通道,局限的机械和热接口,以及将光学功能作为设备自身结构的一部分。紧凑集成化设计减少了组件装配过程中出现问题的风险,同时开辟了制造冷却光学系统,有源光学系统或自由曲面的新方式。陶瓷增材制造技术的净成形能力,还能够提高准确性,改善集成/结合过程的质量。在成就高附加值零件方面,3D打印的应用还包括很多,除了打印极度复杂的结构、打印混合材料,3D打印因为技术种类繁多也带来了高附加值零件的创新空间,例如3D打印感应器、3D打印多层电路、3D打印电池等等对比传统制造,增材制造有什么优势和特点?江苏微纳米增材制造激光直写
增材制造技术已经应用于多个领域,譬如航天、新材料、先进制造。上海实验室增材制造激光直写
增材制造(AdditiveManufacturing,AM)俗称3D打印,融合了计算机辅助设计、材料加工与成型技术、以数字模型文件为基础,通过软件与数控系统将**的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。近二十年来,AM技术取得了快速的发展,“快速原型制造(RapidPrototyping)”、“三维打印(3DPrinting)”、“实体自由制造(SolidFree-formFabrication)”之类各异的叫法分别从不同侧面表达了这一技术的特点。上海实验室增材制造激光直写