球体倍增因子对表面反射率极为敏感。选择漫反射涂层或材料会对给定设计的辐射度产生很大影响(如图3所示)。所示的两种涂层都具有高反射率,在350至1350 nm范围内的反射率超过95%。因此,对于相同的积分球,人们可能预期不会有明显的辐射度增加。然而,辐射度的相对增加大于反射率的相对增加,其系数等于球体倍增因子。虽然其中一种涂层在一定波长范围内比另一种提供2%到15%的反射率增加,但相同的积分球设计将导致辐射度增加40%至240%。较大的增加发生在1400纳米以上的近红外光谱区域。在科研领域,积分球被广泛应用于各种光学实验中。C光源太阳光模拟器传感器
激光功率测量,积分球很容易捕获或者集成近准直光源例如激光光束或者高度分散的光源(例如激光二极管或VCSEL)。由于积分球独特几何结构,激光束功率测量不受激光束偏振及校准的影响。在不影响探测器信号的情况下,该系统可使用开放端口,或可安装激光二极管模块或缩孔器的光纤适配器。 (图5)。可以添加额外的端口来执行并行光谱表征,使其成为可靠的激光二极管寿命测试的理想设备。成像和非成像校准用均匀光源,积分球是一种近乎完美的创造均匀光源的方法。辐射度是离开光源或辐射面的每个立体角的通量密度。辐照度是落在表面上的通量密度,在表面的平面上测量。积分球光源的输出孔径在设计正确的情况下,可以产生接近完美的多光谱漫射光源和朗伯光源,与视角无关(图6)。太阳光模拟均匀光源检测仪积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。
积分球的原理和典型应用:1.积分球的原理,积分球是一种球形仪器,通过测量球的旋转角度来确定位置和运动的工具。其主要原理是基于陀螺仪和加速度计的测量。1.1 陀螺仪原理,陀螺仪是一种测量旋转角速度的装置。积分球中的陀螺仪通过测量球在三个轴向上的转动角速度来确定球的旋转状态。1.2加速度计原理,加速度计是一种测量加速度的装置。积分球中的加速度计通过测量球在三个轴向上的加速度来确定球的运动状态。积分球integrating sphere具有高反射性内表面的空心球体。用来对处于球内或放在球外并靠近某个窗口处的试样对光的散射或发射进行收集的一种高效率器件。球上的小窗口可以让光进入并与检测器靠得较近。在球的内表面涂有无波长选择性的(均匀)漫反射性的白色涂料。在球内任一方向上的照度均相等。 所属学科: 机械工程(一级学科) ;光学仪器(二级学科) ;光学测试仪器(三级学科)。
显然,积分球球体肯定是越圆越好,这样就更能保证光线在其内部的每次反射都有不同路径,更易使光均匀。对于积分球球壁上开有2π测量口的球体,当采用4π方法测量时,其开口的挡板比较好的设计方法是挡板和球体有相同的球面度,这样当用挡板封贴在开口处时,挡板和球体可以形成一个完整的球面,对于光线的散射基本不造成影响。显然,有的积分球采用平面挡板封贴于2π开口处,这样就严重破坏了球体的球面度,进而影响光线散射的均匀性。特别是当2π开口比较大时,这种影响就更加明显。积分球作为光源积分器,在光学测量领域发挥着不可或缺的作用。
测量与光束空间性质无关的光功率的积分球。常用的积分球结构测色仪有 d/8结构和 d/0结构。d/8结构色度仪有两种测量模式 SCI和 SCE;(详见此处),利用 SCI进行颜色测量可以有效地消除物体表面纹理对颜色测量的影响,从而获得物体的真实色彩特征。除了测量的目的,积分球还可以均匀照射一个装置。这在测试数字成像装置时非常重要(例如CCD阵列)。理想情况下,在积分球内表面的涂层在需要的波长范围内都具有很高的反射率,并且反射为漫反射。如果积分球和小端口处的光学损耗很小,多次反射会导致在积分球内部具有很高的光强,从而具有很高的光学效率,即使积分球比光源和探测器的尺寸都大。球坐标系下,积分球体积元素的推导,展现了数学的严谨与美妙。光谱辐照度Helios标准光源无人驾驶
积分球还可以用于光学实验中的光传输研究,通过观察球内的光分布,可以研究光的传播规律。C光源太阳光模拟器传感器
反射率和透射率的测量:积分球可用于测量物体的反射率和透射率。通过将待测物体放置在积分球的出光口处,可以测量出该物体的反射光和透射光的比例,从而得到其反射率和透射率。色度测量:积分球可用于测量物体的颜色。通过测量待测物体在各种波长下的反射光的强度,可以得出该物体的颜色特性。均匀照明:积分球也可用作均匀照明器,为需要均匀照明的场所提供照明。总的来说,积分球是一种非常有用的光学器件,普遍应用于光源测试、颜色测量、光学测量等领域。C光源太阳光模拟器传感器