积分球的基本性能很容易理解,并构成了其多功能性的基础。简单地说,积分球作为光收集器,收集的光可成为照明的光源,或者被采样用于光测量。作为辐射计或光度计的一部分,积分球可以直接测量来自灯、led或激光的辐射通量密度。积分球性能不断完善,其性能与组件和设计规格质量息息相关。一般而言,光学扩散片在小心使用下,可降低测量时因探测器上的入射光源不均匀分布或光束偏移所造成的微小误差,因此可以提高测量的准确性。但是在精密的测量时,就必须使用积分球作为光学扩散器使得上述的误差较小。积分球为科学家提供了一个强大的工具,助力人类探索自然界的规律。VIS-NIR光源积分球模块化设计
反射率和透射率,积分球的较大用途是测量漫射或散射材料的反射率和透射率。该测量方法简单,可定量表征材料(如薄膜,建筑玻璃,混浊液体)。在反射率测量中,样品和参考材料安装在样品端口的外部。积分球用于收集和集成总反射辐射度,为挡板探测器提供信号。在透射率测量中,安装在积分球壁上的样品由球体外的光源照射。然后,样品接收到的辐射度被部分反射、部分透射和部分吸收。积分球收集并集成透射组件,向挡板探测器提供信号。D65光源辐射定标模拟器积分球在医学领域,如CT扫描、放射性的药物分布等,具有广泛应用。
积分球看起来很简单,该光学设备包括一个中空的球形腔体,内部涂有特殊的高反射朗伯涂层,用于均匀散射和漫射入射光。积分球设有入口和出口。通过变换积分球的配置,如光源、配件、开口等可实现不同的应用。积分球工作原理:积分球类似于扩散器,保留更多的光线信息,包括光的颜色、强度等,忽略了空间信息(无法告诉我们在球体表面的不同位置上光的强度是如何分布的)。积分球的内表面是高朗伯特性漫反射材料,这种材料能够将入射的光线以相同的强度反射到各个方向,从而使得光线在球内经过多次反射和散射后,能够均匀地分布,减少光线原始方向的影响。
积分球的基本原理是光通过采样口被积分球收集,如图1,在积分球内部经过多次反射后非常均匀地散射在积分球内部。使用积分球来测量光通量时,可使得测量结果更为可靠,积分球可降低并除去由光线的形状、发散角度、及探测器上不同位置的响应度差异所造成的测量误差。积分球(Integrating sphere)又称为光通球、光度球,是一个中空的完整球壳。积分球多由金属资料制成,内壁涂白色高漫反射层(通常是氧化镁或硫酸钡),且球内壁各点漫射均匀。也有积分球采用高反射高分子资料制成,例如Spectralon资料。积分球在物理学中,是研究物质分布、电场、磁场的重要工具。
积分球根据应用可分为四个基本类别:均匀光源、灯具或光源测量、反射率和透射率测量以及激光功率测量。确实,每个应用类别都有其特定的需求和挑战,需要我们以细微的方式调整和优化积分球以提供较佳的性能。积分球在许多领域都有普遍的应用,其中较常见的两种应用是作为测量灯具总通量的测量工具和作为校准其他仪器的均匀光源。在这些应用中,积分球的用途特别普遍,能够集成来自狭窄准直光束的光源,如激光,或来自全向光源,如白炽灯泡或荧光灯。积分球作为一种光学元件,具有广泛的应用前景。D55光源辐射定标高光谱成像
积分球作为光学测量工具,广泛应用于光源均匀性检测。VIS-NIR光源积分球模块化设计
自《墨经》开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时单独地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为这里大家所惯用的反射定律和折射定律。积分球的作用与原理:一般而言,光学扩散片在小心使用下,可降低测量时因探测器上的入射光源不均匀分布或光束偏移所造成的微小误差,因此可以提高测量的准确性。但是在精密的测量时,就必须使用积分球作为光学扩散器使得上述的误差较小。VIS-NIR光源积分球模块化设计