膜片钳基本参数
  • 品牌
  • Patch Clamp
  • 型号
  • 型号齐全
膜片钳企业商机

电压钳技术,是20世纪初由Cole发明,Hodgkin和Huxley完善,其设计的主要目的是为了证明动作电位的产生机制,即动作电位的峰电位是由于膜对钠的通透性发生了一过性的增大过程。但当时没有直接测定膜通透性的方法,于是就用膜对某种离子的电导来**该种离子的通透性,膜电导测定的依据是电学中的欧姆定律,如膜的Na电导GNa与电化学驱动力(Em-ENa)和膜电流INa的关系GNa=INa/(Em-ENa).因此可通过测量膜电流,再利用欧姆定律来计算膜电导,但是,利用膜电流来计算膜电导时,记录膜电流期间的膜电位必须保持不变,否则膜电流的变化就不能**膜电导的变化。这一条件是利用电压钳技术实现的。下张幻灯中的右边两张图是Hodgkin和Huxley在半个世纪以前利用电压钳记录的抢乌贼的动作电位和动作电位过程中的膜电流的变化图,他们的实验***证明参与动作电位的离子流由Na,k,漏(Cl)三种成分组成。并对这些离子流进行了定量分析。这一技术对阐明动作电位的本质和离子通道的的研究做出了极大的贡献。膜片钳80%的工夫在于刺备细胞。日本脑片膜片钳解决方案

日本脑片膜片钳解决方案,膜片钳

钙成像技术被广泛应用于实时监测神经元、心肌以及多种细胞胞内钙离子的变化,从而检测神经元、心肌的活动情况。这些技术是人们观测神经以及多种细胞活动为直接的手段,现已发展为生命科学研究的热点,也是国家自然科学基金等鼓励申报的重要领域。光遗传学调控技术是近几年正在迅速发展的一项整合了光学、基因操作技术、电生理等多学科交叉的生物技术。NatureMethods杂志将此技术评为"Methodoftheyear2010"[19];美国麻省理工学院科技评述(MITTechnologyReview,2010)在其总结性文章"Theyearinbiomedicine"中指出:光遗传学调控技术现已经迅速成为生命科学,特别是神经和心脏研究领域中热门的研究方向之一。目前这一技术正在被全球几百家从事心脏学、神经科学和神经工程研究的实验室使用,帮助科学家们深入理解大脑的功能,进而为深刻认识神经、精神疾病、心血管疾病的发病机理并研发针对疾病干预和的新技术。德国可升级膜片钳高阻抗封接早期的研究多使用双电极电压钳技术作细胞内电活动的记录。

日本脑片膜片钳解决方案,膜片钳

ePatch虽然设备非常小巧,但功能完备,传统膜片钳设备能做的实验,用ePatch几乎都能做。具有voltage-clamp,current-clamp,zerocurrent-clamp三种模式,自动电极电压飘移补偿,C-fast-C-slow-R-series-P/N补偿,Bridgebalance补偿等功能。可以做全细胞记录也可以做单通道记录,膜片钳技术常做的离子通道电流,突触后电流,动作电位检测等实验都能轻松实现。公司还为此开发了友好的控制和记录软件,笔者上手接触了一下,发现跟AXON的软件类似,并且程序编辑更为简单易用。所记录到的数据可以直接使用Clampfit进行分析,可以说对于使用过AXON设备的膜片钳工作者来说,上手毫无难度。

电压钳的缺点∶电压钳技术目前主要用于巨火细胞的全细胞电流研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥其它技术不能替代的作用。但也有其致命的弱点1、微电极需刺破细胞膜进入细胞,以致造成细胞浆流失,破坏了细胞生理功能的完整性;2、不能测定单一通道电流。因为电压钳制的膜面积很大,包含着大量随机开放和关闭着的通道,而且背景噪音大,往往掩盖了单一通道的电流。3、对体积小的细胞(如哺乳类***元,直径在10-30μm之间)进行电压钳实验,技术上有更大的困难。由于电极需插入细胞,不得不将微电极的前列做得很细,如此细的前列致使电极阻抗很大,常常是60~-8OMΩ或120~150MΩ(取决于不同的充灌液)。这样大的电极阻抗不利于作细胞内电流钳或电压钳记录时在短时间(μs)内向细胞内注入电流,达到钳制膜电压或膜电流之目的。再者,在小细胞上插入的两根电极可产生电容而降低测量电压电极的反应能力。膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来。

日本脑片膜片钳解决方案,膜片钳

电压钳的缺点∶电压钳技术目前主要用于巨火细胞的全细胞电流研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥其它技术不能替代的作用。但也有其致命的弱点1、微电极需刺破细胞膜进入细胞,以致造成细胞浆流失,破坏了细胞生理功能的完整性;2、不能测定单一通道电流。因为电压钳制的膜面积很大,包含着大量随机开放和关闭着的通道,而且背景噪音大,往往掩盖了单一通道的电流。3、对体积小的细胞(如哺乳类***元,直径在10-30μm之间)进行电压钳实验,技术上有更大的困难。由于电极需插入细胞,不得不将微电极的前列做得很细,如此细的前列致使电极阻抗很大,常常是60~-8OMΩ或120~150MΩ(取决于不同的充灌液)。这样大的电极阻抗不利于作细胞内电流钳或电压钳记录时在短时间(0.1μs)内向细胞内注入电流,达到钳制膜电压或膜电流之目的。再者,在小细胞上插入的两根电极可产生电容而降低测量电压电极的反应能力。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*43小时随时人工在线咨询.以膜片钳为钥匙,打开细胞离子通道研究的大门!日本脑片膜片钳解决方案

膜片钳是一种用于夹持薄膜或其他薄片材料的工具。日本脑片膜片钳解决方案

高阻封接问题的解决不仅改善了电流记录性能,还随之出现了研究通道电流的多种膜片钳方式。根据不同的研究目的,可制成不同的膜片构型。(1)细胞吸附膜片(cell-attachedpatch)将两次拉制后经加热抛光的微管电极置于清洁的细胞膜表面上,形成高阻封接,在细胞膜表面隔离出一小片膜,既而通过微管电极对膜片进行电压钳制,分辨测量膜电流,称为细胞贴附膜片。由于不破坏细胞的完整性,这种方式又称为细胞膜上的膜片记录。此时跨膜电位由玻管固定电位和细胞电位决定。因此,为测定膜片两侧的电位,需测定细胞膜电位并从该电位减去玻管电位。从膜片的通道活动看,这种形式的膜片是极稳定的,因细胞骨架及有关代谢过程是完整的,所受的干扰小。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*50小时随时人工在线咨询.日本脑片膜片钳解决方案

与膜片钳相关的**
信息来源于互联网 本站不为信息真实性负责