细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科———电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。早期的研究多使用双电极电压钳技术作细胞内电活动的记录。现代膜片钳技术是在电压钳技术的基础上发展起来的。通过研究离子通道的离子流, 从而了解离子运输、信号传递等信息。美国全自动膜片钳市场价
1980年,Sigworth、Hamill、Neher等在记录电极内施加负压吸引,得到了10~100GΩ的高阻封接(gigaseal),降低记录噪声,实现了单根电极既钳制膜电位又记录单通道电流。获1991年Nobel奖。1955年,Hodgkin和Keens应用电压钳(Voltageclap)在研究神经轴突膜对钾离子通透性时发现放射性钾跨轴突膜的运动很像是通过许多狭窄空洞的运动,并提出了"通道"的概念。1963年,描述电压门控动力学的Hodgkin-Hx上模型(简称H-H模型)荣获谱贝尔医学/生理学奖。1976年,Neher和Sakmann建立膜片钳(Patchclamp)按术。1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。1991年,Neher和Sakmann的膜片铺技术荣获诺贝尔医学/生理学奖。美国细胞膜片钳报价膜片钳记录不但能够在神经元胞体及其树突上进行,而且可同时在这两个不同的部位作膜片钳记录。
资料分析:一般电学性质∶ 通过I/V关系计算得到单通道电导,观察通道有无整流。通过离子选择性、翻转电位或其它通道的条件初步确定通道类型。通道动力学分析∶开放时间、开放概率、关闭时间、通道的时间依赖性失活、开放与关闭类型(簇状猝发,Burst)样开放与闪动样短暂关闭(flickering),化学门控性通道的开、关速率常数等数据。药理学研究∶研究的药物,阻断剂、激动剂或其它调制因素对通道活动的影响情况。综合分析得出结沦。
Flip-Tip翻转技术、将一定密度的细胞悬液灌注在玻璃电极中,下降到电极前列的单个细胞通过在电极外施加负压可以与玻璃电极前列形成稳定的高阻封接,打破露在玻璃电极前列开口外的细胞膜就形成了全细胞记录模式。德国Flyion公司的Flyscreen8500系统采用的就是这一技术,其通量比较高为6,即一次可同时记录6个细胞。它的***特点是∶(1)仍然采用玻璃毛坯作为电极 (2)药物施加微量、快速。
SealChip技术;完全摒弃了玻璃电极,而是采用SealChip平面电极芯片一定密度的细胞悬液灌注在芯片上面,随机下降到芯片上约1-2μm的孔上并在自动负压的吸引下形成高阻封接,打破孔下面 的细胞膜形成全细胞记录模式。采用这一技术的美国Axon (MDS)公司的 PatchXpress 7000A系统是高通量全自动膜片钳技术的典范,是离子通道药物研发的**性工具,在国外实验室和制药厂***用于 hERG通道药理学的研究。其通量比较高为16,即一次可同时记录16个细胞同时,其药物施加微量、快速,不仅用于药物筛选,还大量用于离子通道的基础研究。 封接(seal)是膜片钳记录的关键步骤之一。
离子通道是一种特殊的膜蛋白,它横跨整个膜结构,是细胞内部与部外联系的桥梁和细胞内外物质交换的孔道,当通道开放时。细胞内外的一些无机离子如Na,k Ca 等带电离子可经通道顺浓度梯度或电位梯度进行跨膜扩散,从而形成这些带电离子在膜内外的不同分布态势,这种态势和在不同状态下的动态变化是可兴奋细胞静息电位和动作电的基础。这些无机离子通过离子通道的进围所产生的电活动是生命活动的基础,只有在此基础上才可能有腺体分泌、肌肉收缩、基因表达、新陈代谢等生命活动。离子通道结构和功能障碍决定了许多疾病的发生和发展。因此,了解离子通道的结构、功能以及结构与功能的关系对于从分子水平深入探讨某些疾病的病理生理机制、发现特异药物或措施等均具有十分重要的理论和实际意义。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的。芬兰单电极膜片钳电生理工具
不同的全自动膜片钳技术所采用的原理也不完全相同。美国全自动膜片钳市场价
对电极持续施加一个1mV、10~50 ms的阶跃脉冲刺激,电极入水后电阻约4~6MΩ,此时在计算机屏幕显示框中可看到测试脉冲产生的电流波形。开始时增益不宜设得太高,一般可在1~5mV/pA,以免放大器饱和。由于细胞外液与电极内液之间离子成分的差异造成了液结电位,故一般电极刚入水时测试波形基线并不在零线上,须首先将保持电压设置为0mV,并调节“电极失调控制“使电极直流电流接近于零。用微操纵器使电极靠近细胞,当电极前列与细胞膜接触时封接电阻指示Rm会有所上升,将电极稍向下压,Rm指示会进一步上升。通过细塑料管向电极内稍加负压,细胞膜特性良好时,Rm一般会在1min内快速上升,直至形成GΩ级的高阻抗封接。一般当Rm达到100MΩ左右时,电极前列施加轻微负电压(-30~-10mV)有助于GΩ封接的形成。此时的现象是电流波形再次变得平坦,使电极超极化由-40到-90mV,有助于加速形成封接。为证实GΩ封接的形成,可以增加放大器的增益,从而可以观察到除脉冲电压的首尾两端出现电容性脉冲前列电流之外,电流波形仍呈平坦状。美国全自动膜片钳市场价
因斯蔻浦(上海)生物科技有限公司是一家生物科技,医药科技领域内的技术开发、技术咨询、技术服务、技术转让,实验室设备、仪器仪表、医疗器械、计算机、软件及辅助设备销售,计算机数据处理,货物及技术进出口业务。 成像平台: 1. Inscopix自由活动超微显微成像系统 2. DiveScope多通道内窥镜系统 3. 双光子显微镜 动物行为学平台: 1. PiezoSleep无创睡眠检测系统 2. 自身给药、条件恐惧、斯金纳、睡眠剥夺、跑步机、各类经典迷宫等 神经电生理: 1.NeuroNexus神经电极 2.多通道电生理信号采集系统 3.膜片钳系统 4.AO功能神经外科临床电生理平台 显微细胞: 1. UnipicK单细胞挑选及显微切割系统 科研/临床级3D打印 1. 德国envisionTEC 3D Bioplotter生物打印机 2. 韩国Invivo医疗级生物打印机等。的公司,是一家集研发、设计、生产和销售为一体的专业化公司。滔博生物作为生物科技,医药科技领域内的技术开发、技术咨询、技术服务、技术转让,实验室设备、仪器仪表、医疗器械、计算机、软件及辅助设备销售,计算机数据处理,货物及技术进出口业务。 成像平台: 1. Inscopix自由活动超微显微成像系统 2. DiveScope多通道内窥镜系统 3. 双光子显微镜 动物行为学平台: 1. PiezoSleep无创睡眠检测系统 2. 自身给药、条件恐惧、斯金纳、睡眠剥夺、跑步机、各类经典迷宫等 神经电生理: 1.NeuroNexus神经电极 2.多通道电生理信号采集系统 3.膜片钳系统 4.AO功能神经外科临床电生理平台 显微细胞: 1. UnipicK单细胞挑选及显微切割系统 科研/临床级3D打印 1. 德国envisionTEC 3D Bioplotter生物打印机 2. 韩国Invivo医疗级生物打印机等。的企业之一,为客户提供良好的nVista,nVoke,3D bioplotte,invivo。滔博生物继续坚定不移地走高质量发展道路,既要实现基本面稳定增长,又要聚焦关键领域,实现转型再突破。滔博生物始终关注仪器仪表行业。满足市场需求,提高产品价值,是我们前行的力量。