膜片钳基本参数
  • 品牌
  • Patch Clamp
  • 型号
  • 型号齐全
膜片钳企业商机

膜片钳技术的建立1.抛光及填充好玻璃管微电极,并将它固定在电极夹持器中。2.通过一个与电极夹持器连接的导管给微电极内一个压力,一直到电极浸入记录槽溶液中。3.当电极浸没在溶液中时给电极一个测定脉冲(命令电压,如5-10ms,10mV)读出电流,按照欧姆定律计算电阻。4.通过膜片钳放大器的控制键将微电极前列的连接电位(junctionpotentials)调至零位,这种电位差是由于电极内填充溶液与浸浴液不同离子成分的迁移造成的。5.用微操纵器将微电极前列在直视下靠近要记录的细胞表面,并观察电流的变化,直至阻抗达到1GΩ以上形成"干兆封接"6.调整静息膜电位到期望的钳位电压的水平,使放大器从"搜寻"转到"电压钳"时细胞不至于钳位到零。全自动膜片钳技术的出现标志着膜片钳技术已经发展到了一个崭新阶段。单通道膜片钳细胞功能特性

单通道膜片钳细胞功能特性,膜片钳

实验溶液 浸溶细胞溶液和微电极玻璃管内的填充液成分对全细胞膜片钳记录也是很重要的内容,这关系到封接的容易程度、细胞存活状态及膜电位的状态等。在实验记录过程中,尤其是神经生物学实验,需要迅速更换细胞浸溶液浓度以免受体敏感性降低(desensitization)或需要模拟快速突触反应的寿命。原则上细胞的浸溶液成分或玻璃管内填充液成分应该与细胞外或细胞内间质的成分相似,实际研究中,为了探讨某些通道或电位特性,对这些实验溶液的成分或浓度会作必要调整,没有哪种溶液是理想的。德国可升级膜片钳脑片而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。

单通道膜片钳细胞功能特性,膜片钳

对单细胞形态与功能关系的研究,将膜片钳技术与单细胞逆转录多聚酶链是反应技术结合,在全细胞膜片钳记录下,将单细胞内容物或整个细胞(包括细胞膜)吸入电极中,将细胞内存在的各种mRNA全部快速逆转录成cDNA,再经常规PCR扩增及待检的特异mRNA的检测,借此可对形态相似而电活动不同的结果做出分子水平的解释或为单细胞逆转录多聚酶链式反应提供标本,为同一结构中形态非常相似但功能不同的事实提供分子水平的解释。目前国际上掌握此技术的实验室较少,我国北京大学神经科学研究所于1994年在国内率先开展。

高阻封接技术还明显降低了电流记录的背景噪声,从而戏剧性地提高了时间、空间及电流分辨率,如时间分辨率可达10μs、空间分辨率可达1平方微米及电流分辨率可达10-12A。影响电流记录分辨率的背景噪声除了来自于膜片钳放大器本身外,主要还是信号源的热噪声。信号源如同一个简单的电阻,其热噪声为σn=4Kt△f/R式中σn为电流的均方差根,K为波尔兹曼常数,t为温度,△f为测量带宽,R为电阻值。可见,要得到低噪声的电流记录,信号源的内阻必需非常高。如在1kHz带宽,10%精度的条件下,记录1pA的电流,信号源内阻应为2GΩ以上。电压钳技术只能测量内阻通常达100kΩ~50MΩ的大细胞的电流,从而不能用常规的技术和制备达到所要求的分辨率。早期的研究多使用双电极电压钳技术作细胞内电活动的记录。

单通道膜片钳细胞功能特性,膜片钳

1980年,Sigworth、Hamill、Neher等在记录电极内施加负压吸引,得到了10~100GΩ的高阻封接(gigaseal),降低记录噪声,实现了单根电极既钳制膜电位又记录单通道电流。获1991年Nobel奖。1955年,Hodgkin和Keens应用电压钳(Voltageclap)在研究神经轴突膜对钾离子通透性时发现放射性钾跨轴突膜的运动很像是通过许多狭窄空洞的运动,并提出了"通道"的概念。1963年,描述电压门控动力学的Hodgkin-Hx上模型(简称H-H模型)荣获谱贝尔医学/生理学奖。1976年,Neher和Sakmann建立膜片钳(Patchclamp)按术。1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。1991年,Neher和Sakmann的膜片铺技术荣获诺贝尔医学/生理学奖。微电极的制备膜片钳电极是用外径为1-2mm的毛细玻璃管拉制成的。美国全细胞膜片钳报价

封接是膜片钳记录的关键步骤之一。单通道膜片钳细胞功能特性

离子通道细胞是动物和人体的基本组成单元,细胞与细胞内的通信是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科—电生理学(electrophysiology)。膜片钳技术已成为研究离子通道的"金标准"。电压门控性离子通道∶膜上通道蛋白的带点集团在膜电位改变时,在电场的作用下,重新分布导致通道的关闭,同时有电荷移动,称为门控电流。配体门控离子通道∶神经递质(如乙酰胆碱)、***等与通道蛋白上的特定位点结合,引起蛋白构象的改变,导致通道的打开。机械门控离子通道∶机械牵拉其他。单通道膜片钳细胞功能特性

因斯蔻浦(上海)生物科技有限公司致力于仪器仪表,以科技创新实现***管理的追求。滔博生物拥有一支经验丰富、技术创新的专业研发团队,以高度的专注和执着为客户提供nVista,nVoke,3D bioplotte,invivo。滔博生物始终以本分踏实的精神和必胜的信念,影响并带动团队取得成功。滔博生物始终关注仪器仪表市场,以敏锐的市场洞察力,实现与客户的成长共赢。

与膜片钳相关的**
与膜片钳相关的扩展资料【更多】
膜片钳又称单通道电流记录技术,用特制的玻璃微吸管吸附于细胞表面,使之形成10~100的密封(giga-seal),又称巨阻封接,被孤立的小膜片面积为μm量级,内中*有少数离子通道。然后对该膜片实行电压钳位,可测量单个离子通道开放产生的pA(10的负12次方安培)量级的电流,这种通道开放是一种随机过程。通过观测单个通道开放和关闭的电流变化,可直接得到各种离子通道开放的电流幅值分布、开放几率、开放寿命分布等功能参量,并分析它们与膜电位、离子浓度等之间的关系。还可把吸管吸附的膜片从细胞膜上分离出来,以膜的外侧向外或膜的内侧向外等方式进行实验研究。这种技术对小细胞的电压钳位、改变膜内外溶液成分以及施加药物都很方便。 1976年德国马普生物物理化学研究所Neher和Sakmann***在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh***的单通道离子电流,从而产生了膜片钳技术。
信息来源于互联网 本站不为信息真实性负责