2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量、非侵入和非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今较为重要的技术手段之一。目前,大多数细胞生物学和生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:只研究分离的神经元无法解释神经系统的功能和规律。由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜(Two-photonMicroscopy,简称TPM)的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度较大提高,使得双光子显微镜成为神经科学家进行神经成像较理想的工具。双光子显微镜角膜成像。国内双光子显微镜investigator
Denk很快就将双光子显微镜用于神经元成像,而1997年在Svoboda测量完整老鼠大脑的锥体神经元的感官刺激诱导树突钙离子动态后,双光子显微镜的潜能开始完全凸显。值得一提的是,霍华德·休斯医学院Svoboda实验室和Thorlabs在2016年合作推出了一种强大的多光子介观显微镜,其成像视场达到5毫米,能够跨多个脑区进行高速功能成像。根据清华大学单一采购来源的**指导意见:这种显微镜的视场是普通双光子显微镜的10倍。30年来,双光子显微镜已成为较厚***生物组织三维成像中不可或缺的工具。从双光子到三光子甚至四光子,这种非线性成像技术通常也被统称为多光子显微镜。下图统计了自1990年以来每年发表的多光子显微镜文章数量,发展速度可见一斑。美国布鲁克双光子显微镜多少钱双光子显微镜大量运营在实验室当中;
美国霍华德·休斯医学研究所在Janelia Farm ResearchCampus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士较近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,明显改进了成像质量,使得原来在鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µm)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,使得在小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果发表在较新一期的《Nature Methods》。
光学显微镜和电子显微镜本质的区别在于,光学显微镜:用的是可见光电子显微镜:用的是高频电子射波有什么区别,在于一个基本的原理,光的衍射。。。光波是一个有趣的东西,其中有一项,如果物体的体积小于光的波长,光一般可以绕过去,不发生明显变化。也就是说,有这个物体和没这个物体,在这种情况下,光是不会发生明显改变的。可见光的波长(肉眼):380~780纳米,也就是,如果比380纳米还要小的东西,用光学显微镜,无论你放大多少倍,也是看不见的。因为光绕过去了。。。光的衍射为了克服这个问题,科学家用波长更短的光去照射物体,也是就被观测物。比如10纳米级的光,这样,就能看到我们用肉眼无论如何都看不见的东西。这就是电子显微镜多说一句,光速是不变的。光速=频率×波长。波长越短,频率越大。。频率越大,光波的能量越大。这就是为什么电子显微镜的功率越大,能看到的东西越小。颜色取决于物体能反射光的波长的长短当你看到的物体小于较小可见光的波长,那它就是没有颜色的。。。因为颜色是肉眼对于可见光频率在大脑中的投影。。。。所以只能把他们统一变为黑白。。。没有颜色不是透明的意思,它们不是肉眼可见颜色的定义中包含的。双光子显微镜可以进行厚的组织样品拍摄。
双光子显微镜的优势:在深度组织中以较长时间对活细胞成像,双光子显微镜是当前之选。双光子和共聚焦显微镜都是通过激光激发样品中的荧光标记,使用探测器测量被激发的荧光。但是,共聚焦一般使用单模光纤耦合激光器,通过单光子激发荧光,而双光子使用飞秒激光器,通过几乎同时吸收两个长波光子激发荧光。下面是两种技术的对比图。双光子激发荧光的主要优势:双光子比共聚焦使用的更长的波长,所以对组织的损伤更小且穿透更深。共聚焦的成像深度一般为100微米,双光子则能达到250到500微米,甚至超过1毫米。另外,同时吸收两个光子意味只有较强度聚焦点处能被激发,所以不会损伤焦平面之外的组织,并且生成更清晰的图像。双光子显微镜型号有哪些?美国2PPLUS双光子显微镜应用是什么
双光子显微镜是结合了双光子激发技术和激光扫描共聚显微镜。国内双光子显微镜investigator
使用基因编码的荧光探针可以在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。使用双光子显微镜(2PM)可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,但神经元活动的速度对于常规的2PM来说太快。目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且只是于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要较提高2PM的成像速率。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,从而导致x轴的横向分辨率为0.82µm,y轴的横向分辨率为0.35µm。国内双光子显微镜investigator