化学热处理工艺,化学热处理一般都包括分解、吸收、扩散三个基本过程,比如,渗碳热处理的反应如下:2CO≒[C]+CO2 (放热反应);CH4≒[C]+2H2 (吸热反应)。碳分解出后被金属表面吸收并逐渐向内部扩散,在材料的表面获得足够的碳浓度后再进行淬火和回火处理,会提高粉末冶金材料的表面硬度和淬硬深度。由于粉末冶金材料的孔隙存在,使得活性炭原子从表面渗入内部,完成化学热处理的过程。但是,材料密度越高,孔隙效应就越弱,化学热处理的效果就越不明显,因此,要采用碳势较高的还原性气氛保护。由于粉末冶金工艺无需经过熔融过程,可以避免材料的氧化和变质,保持了材料的纯度。上海粉末冶金制品厂家
粉末冶金技术在材料制备中的优点和缺点:1、绝大多数难熔金属及其化合物、氧化物弥散强化合金、多孔材料、陶瓷材料和硬质合金等只能用粉末冶金方法来制造。2、由于粉末冶金方法能压制成较终尺寸的压坯,而不需要或很少需要后续的机械加工,故能较大程度上节约金属用量,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。4、粉末冶金能保证材料成分配比的正确性和均匀性。5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能较大程度上降低生产成本。吉林医疗粉末冶金粉末冶金还可以实现对材料的定向固溶和析出处理,提高了材料的强度和硬度,延长了零件的使用寿命。
粉末冶金工序 (有利于成形)、成形、烧结),粉末的制取,成形前预处理:退火、混合、筛分、制粒、加成型剂润滑剂,成形前原料准备,成形前原料准备的目的是要制备具有一定化学成分和一定粒度,以及适合的其它物理化学性能的混合料。主要包括粉末退火、混合、筛分、制粒以及加润滑剂等方法。1退火:粉末的退火可使氧化物还原、降低碳和其它杂质含量、提高粉末纯度、消除粉末的加工硬化、稳定粉末的晶体结构、还可将粉末表面钝化以防止其自燃、改善压制性能等。2混合:是指将两种或两种以上的不同成分的粉末混合均匀的过程,通常采用机械混合法和化学混料法。3筛分:筛分是为了把不同颗粒大小的原始粉末进行分级,而使粉末能够按照粒度分成大小范围更窄的若干等级。
在太阳能材料中的应用,太阳能的利用主要包括光伏、光热、光化学转化以及光生物转化等。(1)太阳能光电材料,目前开发的太阳能电池的种类很多,但其光电转换效率普遍偏低,特别是对于装备、航空航天等空间应用领域,光电转换效率是太阳能电池较重要的指标。新的高效太阳能电池材料的开发和制备技术改进等有利于提高光电转化效率。粉末冶金技术在太阳能光电材料制备中的应用的体现就是制备薄膜太阳能电池。薄膜太阳能电池,多晶硅薄膜太阳能电池的方法有等离子体增强化学气相沉积法(PECVD)、低压化学气相沉积法(LPCVD)、热丝化学气相沉积法(HwCVD)、快速热化学气相沉积法(RTCVD)、液相外延法(LPE)、溅射沉积法等。粉末冶金还可以实现对零件表面的特殊处理,如表面喷涂、涂层等,提高了零件的耐磨性和耐腐蚀性。
粉末冶金材料的类别:传统粉末冶金材料,传统的粉末冶金材料主要有铁基粉末冶金材料、铜基粉末冶金材料、硬质合金粉末冶金材料等几种类别,其中铁基粉末冶金材料是传统粉末冶金材料中较基本、较普遍、较关键的材料,当前被普遍应用在汽车制造行业当中,随着技术的进步,其应用范围将会进一步扩大。铜基粉末冶金材料的耐腐蚀性较强且种类多,被普遍应用在电器制造行业中。硬质合金粉末冶金材料的熔点较高,其硬度与强度较高,被普遍应用在核武器制造等档次高领域中。粉末冶金还可以实现对复杂内部结构的制造,如孔、凹槽等,提高了零件的功能性和可靠性。珠海工装夹冶具粉末冶金
粉末冶金工艺具有较高的自动化程度,可以实现生产过程的智能化控制,提高了生产的稳定性和可靠性。上海粉末冶金制品厂家
粉末冶金材料热处理的影响因素分析,粉末冶金材料在烧结过程中生成的孔隙是其固有特点,也给热处理带来了很大影响,特别是孔隙率的变化与热处理的关系,为了改善致密性和晶粒度,加入的合金元素也对热处理有一定影响:孔隙对热处理过程的影响,粉末冶金材料在热处理时,通过快速冷却抑制奥氏体扩散转变成其他组织,从而获得马氏体,而孔隙的存在对材料的散热性影响较大。通过导热率公式:导热率=金属理论导热率×(1-2×孔隙率)/100,可以看出,淬透性随着孔隙率的增加而下降。另一方面,孔隙还影响材料的密度,对材料热处理后表面硬度和淬硬深度的效果又因密度影响而有关联,降低了材料表面硬度。而且,因为孔隙的存在,淬火时不能用盐水作为介质,以免因盐分残留造成腐蚀,所以,一般热处理是在真空或气体介质中进行的。上海粉末冶金制品厂家