2010 年,黑莓手机的标牌外观件采用了 MIM 制程工艺技术,开启了 MIM 零部件在手机上的批量化使用;苹果公司自2010年开始使用MIM零部件,并不断拓展、引导MIM 的使用范围,电源接口件、卡托、摄像头圈、按键等 MIM 零部件在手机上的成功应用,成就了中国 MIM 企业在消费电子领域的先进地位。随着智能手机、智能穿戴设备等消费电子产品向更加轻薄化发展,这些产品的主要零部件也将更加精密化和复杂化。在此背景下,MIM 工艺的应用前景将日益广阔。MIM技术在制造小型金属零件中独具优势,能实现高质量、大批量生产。眼镜MIM厂商
技术优势:可成型高度复杂结构的结构零件,注射成型工艺技术利用注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件高复杂结构的实现。以往在传统加工技术中先作成个别元件再组合成组件的方式,在使用MIM技术时可以考虑整合成完整的单一零件,较大程度上减少步骤,简化加工程序。MIM与其他金属加工方法比较,制品尺寸精度高,不必进行二次加工或只需少量精加工。注射成型工艺可直接成型薄壁、复杂结构件,制品形状已接近较终产品要求,零件尺寸公差一般保持在0.1~0.3左右,特别对于降低难于进行机械加工的硬质合金的加工成本,减少贵重金属的加工损失尤其具有重要意义。形状设计没有限制,从而适用于几乎所有产品。MIM一次成型无法达到的公差可以借助表面处理实现。深圳机械MIM厂商MIM可以实现金属材料的多种组合,制造出具有复合性能的零件。
脱脂,运用物理或者化学方法去除生坯中的粘结剂,零件由金属粉末与粘结剂的混合物变为单纯的脱脂坯件(棕坯,有微小孔隙),形状和结构不变。脱脂工艺必须在保持产品形态的情况下保证粘结剂从毛坯的不同部位沿着颗粒之间的微小通道逐渐地排出,而不降低毛坯的强度。该工序的主要是:控制坯件中粘结剂的残留量,若脱脂处理不到位,则粘结剂残留过多,高温烧结时大量粘结剂分解气化容易造成产品爆裂;若脱脂过度,则可能造成产品金属氧化、结构变形等不良后果。因此,脱脂工艺的选择与工艺参数的控制尤为重要。
金属注射成形 ( Metal injection Molding ,MIM ) 是一种将金属粉末与其粘结剂的增塑混合料注射于模型中的成型方法。它是先将所选粉末与粘结剂进行混合,然后将混合料进行制粒再注射成型所需要的形状。聚合物将其黏性流动的特征赋予混合料,而有助于成形、模腔填充和粉末装填的均匀性。成形以后排除粘结剂,再对脱脂坯进行烧结。有的烧结产品还可能要进行进一步致密化处理、热处理或机加工。烧结产品不只具有与塑料注射成型法所得制品一样的复杂形状和高精度,而且具有与锻件接近的物理、化学与机械性能。该工艺技术适合大批量生产小型、精密、三维形状复杂以及具有特殊性能要求的金属零部件的制造。MIM工艺流程:产品技术交流→产品设计→模具设计→模具制造;金属、陶瓷粉末、粘接剂→混炼→注射成形→脱除粘接剂→烧结→整形→检验→成品;(配料→混炼→造粒→注射成形→化学萃取→高温脱粘→烧结→后处理→成品)。相比传统加工方法,MIM技术能够明显降低生产成本,提高材料利用率。
行业内企业对自动化智能化生产设备与检测设备的需求越来越大,自动化智能化程度快速提升。微粉末注射成形、超大件注射成形及共注射成形等技术工艺将成为行业的重要发展方向。微粉末注射成形将促使 MIM 产品向更小更精细的方向发展;超大件注射成形通过减少粘结剂用量增大产品尺寸,推动超大尺寸 MIM 产品的应用及普及;共注射成形能够将磁性材料与非磁性材料、硬质材料与软质材料、导电材料与绝缘材料有机结合,从而有效提升 MIM 产品适用性。通过MIM技术,可以实现大批量生产、一体成型,提高生产效率和产品质量。广东饰片挂件MIM生产
MIM工艺可以实现对金属粉末的高度填充密度,生产出密度均匀、无孔隙的零件。眼镜MIM厂商
传统机械加工工艺靠自动化而提升其加工能力,在效果和精度上有极大的进步,但在基本程序上仍脱不开以逐步加工(车、刨、铣、磨、钻孔、抛光等)来完成零件形状的加工。机械加工方法的加工精度远优于其他加工方法,但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具,有些零件无法用机械加工完成。相反,MIM可以有效利用材料,不受限制,对于小型、高难度形状的精密零件的制造,MIM工艺比较机械加工而言,其成本较低且效率高,具有很强的竞争力。眼镜MIM厂商