化学成分主要是指粉末中金属的含量和杂质含量。杂质主要是指:(1)与主要金属结合,形成固溶体或化合物的金属或者非金属成分,如还原铁粉中的Si,Mn,C,S,P,O等;(2)从原料和从粉末生产过程中带进的机械夹杂,二氧化硅,氧化铝,硅酸盐,难熔金属或者碳化物等酸不溶物;(3)粉末表面吸附的氧、水汽和其他气体(N2、CO2)。制粉工艺带进的杂质有:水溶液电解粉末中的氢,气体还原粉末中溶解的碳,氮或氢,羰基粉末中溶解的碳等。粉末冶金可以制造具有良好耐腐蚀性的陶瓷材料,用于化学设备和耐腐蚀部件。肇庆黄铜粉末冶金技术
珩磨加工,珩磨加工是运用无定形切削角度,对硬质齿轮进行较终精加工的工艺。珩磨加工不只具有很高的经济性,而且能使被加工齿轮具有低噪音的光滑表面。相对于研磨,珩磨加工的切削速度很低(0,5至10m/s),因此避免了切削发热对齿轮加工的损害。更确切的说,在被加工齿面上产生的内应力,对设备的承载能力产生一定的积极作用。钻孔,钻孔是一种旋转切削的加工工艺。刀具的转轴和被加工孔的中心是在轴向是完全吻合的,且与刀具在轴向的进给方向是一致的。切削运动的主轴应于刀具保持一致,和进给运动方向无关。肇庆黄铜粉末冶金技术粉末冶金广泛应用于汽车、航空航天、电子等领域,生产出的零件具有强度高、耐磨性和耐腐蚀性。
粉末冶金技术能实现材料的近净成型,具有原材料利用率高(约95%)、生产效率高、节能环保的优势,能够直接生产形状复杂、高精度的高性能粉末冶金产品,粉末冶金材料在现代工业中的应用普遍,特别是汽车工业、生活用品、机械设备等的应用中,粉末冶金材料已经占有很大的比重。它们在取代低密度、低硬度和强度的铸铁材料方面已经具有明显优势,在高硬度、高精度和强度的精密复杂零件的应用中也在逐渐推广。许多难溶材料只适合用粉末冶金工艺来加工,特备是硬质合金这样的材料,普通的加工方法就不太适合。下文带大家看看粉末冶金的主要材料体系。
粉末冶金技术在新能源材料中的应用:在风能材料中的应用,风能是新能源而且具有充足、清洁等特点,依靠风能发电可以利用粉末冶金技术制造其发电设备。在风能发电设备的制作过程当中需要利用粉末冶金技术的两种材料,即永磁钕铁硼材料和制动片材料,这两种材料的应用能够直接影响风能发电设备的安全性与稳定性并影响其运行。目前常用的风电机组的机械制动材料为铜基粉末冶金摩擦材料,采用粉末冶金技术制备的摩擦材料在性能质量上具有突出的优点,在组分的设计,产品的多样化上也极具灵活性,它可以任意改变材料的组分,因而可以制备出在不同情况下应用的性能优异的摩擦材料。铜基粉末冶金摩擦材料的摩擦系数较小、导热性好、摩擦系数较稳定、耐磨性较好,应用在风机制动系统上较大程度上提高了风电机组运行的稳定性。而钕铁硼稀土永磁体是稀土永磁电机组成中的较重要的零部件,可替代传统电机,向大容量﹑优良的发电质量、提高材料利用率、降低噪声、降低成本、提高效率的方向发展。钕铁硼稀土永磁材料采用粉末冶金技术来制备,基本工艺是熔炼-铸锭-破碎-微粉碎-磁场中成形-烧结-时效处理-机加工-表面处理-充磁。粉末冶金工艺可以实现对材料成分和微观组织的精确控制,生产出具有特定功能和性能的定制化零件。
常用的粉末成形方法:1)注射成形,工艺流程:混炼、制粒、注射、脱脂、烧结;2)软模压制成形,3)粉末轧制成形。将金属粉末通过一个特制的漏斗喂人转动的轧辗缝中,即可压轧出具有一定厚度和连续长度且有适当强度的板带坯料。这些坯料经过烧结炉的预烧结和烧结处理,再经过轧制加工、热处理等工序即可制成有一定孔隙度的或致密的粉末冶金板带材。4)楔形压制,5)挤压成形,把金属粉末与一定量的有机黏结剂混合(成糊状),用适当的模具在常温(或高温)下加上压力进行挤压,经过干燥、固化和烧结便可制成产品。6)高能成形法(爆裂成形法)。粉末冶金技术实现了材料性能与成本之间的平衡,为企业带来了明显的经济效益。肇庆黄铜粉末冶金技术
随着技术的不断进步和市场需求的增长,粉末冶金技术将继续在各个领域发挥重要作用,推动制造业发展。肇庆黄铜粉末冶金技术
粉末冶金材料热处理的影响因素分析,粉末冶金材料在烧结过程中生成的孔隙是其固有特点,也给热处理带来了很大影响,特别是孔隙率的变化与热处理的关系,为了改善致密性和晶粒度,加入的合金元素也对热处理有一定影响:孔隙对热处理过程的影响,粉末冶金材料在热处理时,通过快速冷却抑制奥氏体扩散转变成其他组织,从而获得马氏体,而孔隙的存在对材料的散热性影响较大。通过导热率公式:导热率=金属理论导热率×(1-2×孔隙率)/100,可以看出,淬透性随着孔隙率的增加而下降。另一方面,孔隙还影响材料的密度,对材料热处理后表面硬度和淬硬深度的效果又因密度影响而有关联,降低了材料表面硬度。而且,因为孔隙的存在,淬火时不能用盐水作为介质,以免因盐分残留造成腐蚀,所以,一般热处理是在真空或气体介质中进行的。肇庆黄铜粉末冶金技术