企业商机
QPQ基本参数
  • 品牌
  • 工研
  • 工件材质
  • 不锈钢,金属,铁材,钢,铁,铜,铝合金,钢材,铝
  • 类型
  • 发黑
  • 加工贸易形式
  • 来料加工,提供QPQ**盐;QPQ生产整体解决方案;工艺开发;技术培训
  • 厂家
  • 成都工具研究所
QPQ企业商机

H13作为应用较为广且具有代表性的热作模具钢,在高温下因拥有较高的热硬性、冲击韧性、耐磨性以及切削加工性,所以通常应用于热挤压和压铸模具的制造。由于H13模具钢在服役过程中表面会受到一定程度的磨损与腐蚀,所以利用表面技术来提高H13模具钢的性能,延长使用寿命具有重要的意义。经过工研所QPQ处理后,表面硬度增加,由基体的490HV增加到1100HV,且磨损失重量不到基体的十分之一,造成该现象的原因是经过QPQ工艺处理后,CrN和Fe2~3N等高硬度、高耐磨氮化物以及低摩擦系数Fe3O4形成于H13模具钢表面,使其表现出良好的抗磨损性能。QPQ表面处理可以减少刀具的摩擦系数,提高切削效率。气门QPQ废渣

气门QPQ废渣,QPQ

成都工具研究所有限公司的QPQ盐浴复合处理技术发展于上世纪80年代,不仅一举打破国际垄断,而且在环保方面达到了国际先进水平,成为国内拥有QPQ技术的公司。QPQ技术是一种可以同时大幅度提高金属耐磨性和耐蚀性的表面改性技术,在工艺上是热处理技术和防腐技术的复合,在渗层组织上是氮化物层和氧化物层的复合,在渗层性能上是耐磨性和防腐性的复合。该工艺主要应用在黑色金属的防腐抗蚀,硬度提升,耐磨性提升等性能需求,同时,QPQ 不会明显改变零件尺寸,因此非常适合公差要求严格的零件。氮化盐浴QPQ替代高频淬火QPQ表面处理可以提高刀具的抗磨损性能。

气门QPQ废渣,QPQ

工研所的QPQ处理技术,是一种创新的金属盐浴表面强化改性技术。它通过将金属置于两种具有不同性质的低温熔融盐浴中进行复合处理,促使多种有益元素同时渗入金属表面,形成独特的复合渗层。这一渗层由致密的氧化膜、牢固的化合物层以及深入的扩散层共同构成,实现了对金属表面的整体强化改性。尤为值得一提的是,QPQ技术的全工艺过程绿色环保,无任何有害物质排放,完全符合现代工业的绿色生产要求。与传统的单一热处理技术和表面防护技术相比,QPQ技术能够同时、大幅度地提升金属表面的耐磨性和耐蚀性,从而明显延长金属制品的使用寿命,提高其综合性能。这一独特的技术优势,使得QPQ技术在金属表面处理领域展现出了广阔的应用前景。

在金属成型领域,压铸模、挤压模、锻模以及拉伸模等模具扮演着至关重要的角色。这些模具不仅要求具备很高的强度,以抵抗成型过程中的巨大压力,还要求具有良好的抗变形能力和抗磨损能力,确保成型件的精度和质量。为了达到这些要求,模具在生产过程中必须经历严格的热处理,以增强其整体强度。然而,为了进一步延长模具的使用寿命,热处理之后还需进行QPQ处理。工研所的QPQ处理技术通过特定的化学反应,在模具表面形成一层厚度超过10微米的化合物层。这层化合物层主要由氮化物、碳化物等硬质物质构成,极大地提高了模具表面的耐磨性,减少了因摩擦而产生的磨损。同时,化合物层以下的扩散层通过元素扩散增强了材料的微观结构,从而提高了模具的疲劳强度。得益于QPQ处理带来的这些明显优势,模具的使用寿命通常可以延长2倍以上。这不仅降低了生产成本,还提高了生产效率和产品质量,为金属成型行业带来了明显的效益。经过QPQ表面处理的刀具具有更好的热稳定性。

气门QPQ废渣,QPQ

在QPQ的生产过程中,会有一定的废水、废气、废渣产生,我们需要采取相应的措施,使其符合排放标准。工研所QPQ生产过程中产生的废水主要是来自工件从氧化炉出来后清洗工件时所产生的,虽然从氮化炉中带出的少量氰根在氧化炉中完全被分解,但是氧化盐呈碱性不能直接排放,需要使用硫酸氢钠或硫酸等酸性物质将其中和直到pH值在8~9才可排放;工研所QPQ生产过程中的废气主要来源于调整盐的添加和工件氧化时发生化学反应产生的氨气和粉尘,QPQ在熔炼基盐和添加调整盐时会产生氨气,刺激嗅觉,废气排放必须采用排气筒(烟囱)排放,废气治理的主要工艺流程主要是:布袋除尘→喷淋式吸收塔吸收氨气→15mL排气筒排放;工研所QPQ生产过程中的废渣主要来源于氮化盐和氧化盐,为了保证盐浴的清洁度,通常将沉渣器放入氮化炉中,待取出冷却后沉积在沉渣器底部的黑色颗粒是无毒的铁渣,只有少量白色物为残留的氮化盐,残留的氮化盐中含有低浓度的氰根,不能随意丢弃,可放入氧化盐浴中进行中和处理,氧化盐的渣主要来源于工件带入的氮化盐和氧化盐反应的产物以及工件表面疏松层脱落的铁离子形成的铁渣,可以视同热处理盐浴炉炉渣一样处理。QPQ表面处理可以提高刀具的抗粘附性能。高耐蚀QPQ废气

QPQ表面处理可以提高刀具的抗疲劳性能,延长刀具的使用寿命。气门QPQ废渣

在工研所QPQ技术的日常生产中,QPQ盐的质量对工件表面的化合物层特性,包括深度、硬度以及疏松级别,具有至关重要的影响。其中,基盐中的氰酸根浓度是一个关键指标,其精确控制是QPQ技术质量控制流程中的重要环节。为了准确检测并调整基盐中的氰酸根含量,经典的甲醛定氮法被广泛应用。这一方法需要精心配制甲基红和亚甲基蓝的混合指示剂,以确保在加入酸碱时能够精确控制反应进程。随后,通过加入过量的甲醛,溶液中的氨态氮会被转化为氢离子。在酚酞指示剂的作用下,利用氢氧化钠对转化后的氢离子进行滴定。通过记录滴定过程中消耗的氢氧化钠量,可以精确地推算出基盐中氰酸根的浓度。这一检测与调整过程不仅确保了QPQ处理中盐的质量,也为工件表面形成高质量化合物层提供了有力保障,从而进一步提升了工件的整体性能和使用寿命。气门QPQ废渣

QPQ产品展示
  • 气门QPQ废渣,QPQ
  • 气门QPQ废渣,QPQ
  • 气门QPQ废渣,QPQ
与QPQ相关的文章
相关专题
与QPQ相关的**
信息来源于互联网 本站不为信息真实性负责