菲涅尔透镜使用普通的凸透镜,会出现边角变暗、模糊的现象,这是因为光的折射只发生在介质的交界面,凸透镜片较厚,光在玻璃中直线传播的部分会使得光线衰减。如果可以去掉直线传播的部分,只保留发生折射的曲面,便能省下大量材料同时达到相同的聚光效果。菲涅尔透镜就是采用这种原理的。菲涅尔透镜看上去像一片有无数多个同心圆纹路(即菲涅尔带)的玻璃,却能达到凸透镜的效果,如果投射光源是平行光,汇聚投射后能够保持图像各处亮度的一致。菲涅尔透镜螺距代理价格。东莞负菲涅尔透镜
可以实现多种功能,例如聚焦、发散、偏折、贝塞尔透镜、高透射率等;(2)本实用新型的可调二维声学超材料透镜使用了机械旋转的可调机制,这是一种实时的调控方式,二维声学超材料透镜的各种功能可以随着单元结构的旋转实时变化;(3)本实用新型的可调二维声学超材料透镜设计简单,所有单元都是几何结构、尺寸相同的c型单元结构,样品的加工由3d打印技术实现,加工方便,机械旋转的调节机制相比于温度、嵌入式电磁铁、压电材料、薄膜结构等调节机制相比结构简单,易于实现;(4)本实用新型的可调二维声学超材料透镜的原材料采用光敏树脂,制得的声学聚焦透镜具有轻质量和低成本的特点;(5)本实用新型的可调二维声学超材料透镜的具有宽带特性,在宽频带范围内各种功能均具有良好的效果;(6)与传统的声学透镜相比,本实用新型的可调二维声学超材料透镜结构简单灵活,有良好的通用性,通过改变结构的尺寸便可设计在不同工作频点,整个透镜为平面结构,相比其他透镜,易集成,适于推广应用。附图说明图1是本实用新型实施例中旋转可调的多功能二维声学超材料透镜的三维示意图;图2是本实用新型实施例中旋转可调的多功能二维声学超材料透镜的c型单元结构示意图,。惠州菲涅尔透镜 zemax菲涅尔透镜衍射检测技术。
将其波阵面形成为期望的形式。当诸如柱体或圆柱之类的中心对称亚波长特征被用作散射器时,sws设备可以利用非偏振光(像来自vcsel一样)进行操作。图7示出了具有衬底302的示例光源,其中,该衬底302具有多个vcsel结构702。根据实施例,多个sws704被图案化在一个或多个vcsel结构702的上表面上或其附近。提供sws704以改变从给定vcsel结构702的上表面发射的光的相位。可以横跨vcsel结构702的表面不同地改变相位,以使得一些区域创建发射光的相长干涉同时其他区域创建发射光的相消干涉。通过控制相长/相消干涉的区域所在的位置,还可以控制发射光的波束形状(例如,图案)。可以例外地使用高折射率材料(>)来形成sws704。例如,用于波束成形的sws已经被开发用于使用诸如硅之类的高折射率材料的近红外光。下面的表1提供了不同可见光波长(460nm-蓝、550nm-绿、以及650nm-红)下的各种材料的折射率。诸如硅之类的材料可以具有高折射率,但是这些材料还可以吸收可见范围(例如,红、绿、蓝)中的不期望的大百分比的入射光(例如,40%或更多)。一直认为可见波长透明材料(例如,折射率大约为(si3n4))不具有足够高的折射率来支持有效地操纵光学波振面所需要的光学谐振。诸如氧化钛。
集成电路(ic)、**集成电路(asic)、片上系统(soc)、桌面型计算机、膝上型计算机、平板计算机、服务器、智能电话等。其他实施例可以被实现为由可编程控制设备执行的软件。如本文描述的,各种实施例可以使用硬件元件、软件元件、或它们的任意组合实现。硬件元件的示例可以包括处理器、微处理器、电路、电路元件(例如,晶体管、电阻器、电容器、电感器等)、集成电路、**集成电路(asic)、可编程逻辑器件(pld)、数字信号处理器(dsp)、现场可编程门阵列(fpga)、逻辑门、寄存器、半导体器件、芯片、微芯片、芯片集等。本文提出了很多具体细节,以提供对实施例的透彻理解。但是,将明白的是,可以在没有这些具体细节的条件下实施实施例。另外,尽管以特定于结构特征和/或方法动作的语言描述了主题,但是将理解的是,所附权利要求中限定的主题不一定局限于本文描述的具体特征或动作。相反,本文描述的具体特征和动作被作为实现权利要求的示例形式公开。另外的示例实施例下面的示例涉及另外的实施例,根据这些实施例多种排列和配置将是明显的。示例1是一种激光源。该激光源包括衬底、一个或多个***vscel结构、以及一个或多个第二vcsel结构。一个或多个***vcsel结构在衬底的表面上。球面菲涅尔透镜常见问题有哪些?
tio2)之类的其他材料包括使得它们更适用于操纵光学波振面的更高的折射率,但是这种材料对以5:1至10:1之间的更高纵横比进行制造提出了挑战。下面的表2提供了不同材料的概况,包括它们的折射率、比较大效率的厚度、比较大散射效率、以及可见范围中的光吸收。比较大散射效率是通过使用周期性透射sws作为将垂直入射的平面波偏转到特定衍射级的模型系统计算得出的。从表2可以看出,诸如硅和锗之类的材料具有极好的散射效率和高反射率。但是,这些材料还会由于它们的小带隙而吸收可见范围中的光(并且还将部分地吸收近红外波长)。诸如氧化硅和氧化铝之类的材料在可见范围中几乎是透明的,但是具有较低的散射效率,因此限制了它们作为sws材料候选的有用性。诸如氮化硅和氧化钛之类的材料提供了散射效率和低光吸收率的良好混合。根据实施例,在实现对于**造成本至关重要的高制造吞吐量的同时,制造在可见和/或红外范围中将高光约束和低光吸收结合在一起的新型sws设计(这里称为“元原子(metaatom)”)。图8示出了根据实施例的具有圆柱形状的示例元原子800,其中,芯材804被薄壳材806围绕。元原子800被制造在vcsel结构的顶层802上。顶层802可以是vcsel结构的发出光的任意层。正菲涅尔透镜常见问题有哪些?多功能菲涅尔透镜有哪些
菲涅尔透镜的焦距答疑解惑;东莞负菲涅尔透镜
菲涅尔透镜是一种应用十分***的超精密光学透镜器件。如太阳能聚光发电系统,投影显示系统、激光电视屏幕,特别是超大尺寸的菲涅尔透镜,可以作为超大尺寸的透镜,或反射面,探索在空间太阳能、巨型反射面(如贵州天眼500米口径的射电望远镜)等方面的应用。传统透镜和菲涅尔到底有什么不同,***我们一起来聊聊。传统透镜比较厚重,而且尺寸较小;菲涅尔透镜轻薄、大尺寸。菲涅尔透镜原理是法国物理学家奥古斯汀.菲涅尔(AugustinFresnel)发明的,将球面及非球面的透镜转化轻薄型平面形状透镜,而达到同样的光学效果,再通过超精密加工方式,在平面表面加工出大量光学级环带,每个环带都发挥**的透镜作用。菲涅尔透镜是实现透镜大型化、平面化,轻薄化比较好方式。菲斯特菲涅尔透镜的制造,特别是大尺寸透镜制造涉及了光学设计模拟、超精密制造技术,高分子材料和精密成型工艺。菲涅尔透镜可***应用于照明、航海、科学研究等。菲涅尔透镜是平板形态,实现反射和汇聚射线功能。利用本原理和拼接技术,可以将任何口径的抛物面、椭球面、高次曲面光学透镜转换成平面形态,从而实现任意尺寸拼接菲涅尔透镜,探索在空间太阳能、巨型反射面。东莞负菲涅尔透镜
深圳市芯华利实业有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在广东省等地区的电子元器件行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**深圳市芯华利实业供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!