来自具有不同波长的两个波束的斑点图案变得不相关。这意味着应该设计各种vcsel的孔径宽度以使得vcsel之间的发射波长差由下式给出:δλ≥λ2/2z(1)其中,z是物体的照明表面的表面剖面高度变化。对于940nm的示例峰值发射波长和z=,波长差应≥。图5是示出根据实施例的具有不同孔径宽度的两个不同vcsel阵列的激光光谱的图表。顶部的光谱是从***vcsel阵列测得的,其中每个vcsel结构具有4μm的孔径宽度。底部的光谱是从第二vcsel阵列测得的,其中每个vcsel结构具有2μm的孔径宽度。从光谱可以看出,具有较大孔径大小的***vcsel阵列包括两种横向激光模式和具有973nm左右的峰值波长的主导模式。与之对照,第二vcsel阵列*包括其峰值波长在972nm左右的单个激光模式。通过改变孔径大小,可以改变横向激光模式的数目和发射的峰值波长,从而产生不同的斑点图案。图6示出了根据实施例的具有衬底302的光源的另一示例,其中,该衬底包括具有不同孔径宽度的vcsel结构的各种区域。衬底302包括具有***孔径宽度(d1)的多个vcsel的***区域602、具有第二孔径宽度(d2)的多个vcsel的第二区域604、具有第三孔径宽度(d3)的多个vcsel的第三区域606、以及具有第四孔径宽度。菲涅尔透镜生产企业品牌排行榜。红外透镜定制价格
可以确定在***多个vcsel结构和第二多个vcsel结构之间的孔径宽度的大小,使得从发射的辐射生成任意数目的不同横向激光模式和斑点模式。通过从具有不同孔径宽度的vcsel结构发射辐射,可以降低斑点噪声。在使用具有两个不同孔径宽度的两组vcsel结构的示例中,斑点噪声降低大约可以使用附加的vcsel结构阵列,其中每个阵列具有不同的孔径宽度,以将斑点噪声降低因数其中n是不同vcsel阵列的数目。接着,在操作1106,在由***和第二vscel结构发射的辐射被从物体反射出来之后,在检测器处接收该辐射。所接收的辐射可被用来定义物体的数字3d图像。当然,在一些实施例中,如先前结合系统所描述的,可以执行附加操作。具体地,辐射可以从与***和第二多个vcsel结构布置在相同衬底上的第三多个vcsel结构发射。第三多个vcsel结构中的每个vcsel结构包括不同于***和第二多个vcsel结构的孔径宽度的孔径宽度,使得从第三多个vcsel结构发射的辐射产生了不同于***和第二斑点图案的第三斑点图案。除非一其他方式明确声明,否则可以明白的是,诸如“处理”、“计算”、“运算”、“确定”之类的术语指的是计算机或计算系统或类似电子计算设备的动作和/或处理。江西热红外透镜结构菲涅尔透镜卖家厂家供应。
该声学超材料未来在声学隐身、声学吸波、声波通信及其他各类声学器件中具有很多潜在应用。技术实现要素:实用新型目的:本实用新型提供一种可实时调控、多功能、结构简单、低成本、易于加工的旋转可调的二维声学超材料透镜。技术方案:为实现上述实用新型目的,本实用新型采用以下技术方案:一种旋转可调的多功能二维声学超材料透镜,包括基底材料层以及等间隔镶嵌在基底材料层上的若干c型单元超材料阵列,c型单元超材料阵列由若干个c型单元结构周期性排列而成。可选的,c型单元结构为亚波长单元结构,且c型单元结构为各向异性的超材料单元。可选的,每个c型单元结构由电机控制旋转角度,不同的旋转角度下c型单元结构获得不同的折射率值,进而得到不同折射率分布的c型单元超材料阵列。可选的,c型单元结构和基底材料层均由光敏树脂材料经3d打印制作而成。可选的,c型单元结构为半圆筒型,其周期尺寸为a,外半径为r,圆环宽度为w,开口角度为θ。可选的,该透镜为聚焦透镜、发散透镜、偏折透镜或高透射透镜。可选的,该透镜工作频率为4000hz~9000hz。有益效果:与现有技术相比,本实用新型具有以下优点:(1)本实用新型的可调二维声学超材料透镜通过电机控制单元结构旋转。
用等效参数表征c型单元结构的特性。选取c型单元结构时,要选取折射率范围符合设计要求,并且阻抗相对较小的结构。本发明设计的声学超材料透镜中心频率为7000hz,十分之一波长约为5mm,相邻两个c型单元结构间距为5mm。为了实现更多功能,每个c型单元结构的折射率变化范围需要尽可能的大,同时折射率的最小值要接近于1。考虑到3d打印的加工精度以及尺寸限制,经优化后我们取c型单元结构的外半径r=,圆环宽度w=,开口角度θ=145°,旋转角度从158°变化到252°,中心频率7000hz,折射率变化范围为。图3给出了c型单元结构在不同频率下,相对折射率随旋转角度的变化曲线,这些曲线的偏差很小,说明该c型单元结构具有一定的带宽。本实施例中,设计了四种功能的声学超材料透镜,分别是聚焦透镜、发散透镜、偏折透镜和高透射透镜。首先是聚焦透镜,它将入射的平面波汇聚在一个点上,其原理图如图4(a)所示,假设两束相距△y的波束从垂直c型单元结构侧面的方向入射到透镜上,根据费马原理,在均匀媒质中,光程等于距离乘以折射率。将声波类比于光波,为了实现聚焦功能,入射波波前s1和出射波波前s2光程要相同。声学超材料透镜的长度为l,宽度为w,焦点与透镜的距离为f。菲涅尔透镜效率代理价格。
本实用新型涉及一种多功能声学超材料透镜,特别涉及一种旋转可调的多功能二维声学超材料透镜。背景技术:近年来,随着新型人工电磁材料(metamaterials)的发展,这种人造材料的有趣性质越发受到关注。类比于电磁超材料,声学超材料也有许多自然界不存在的奇特性质,例如双负特性(负等效密度和负弹性模量)、零折射率、负折射率、隐身、幻象等。渐变折射率(grin)材料是一种等效折射率分布随空间变化而逐渐改变的人工超材料。声学上根据折射率与等效密度和弹性模量之间的关系,渐变折射率材料可以通过设计人工结构予以实现。声波进入渐变折射率材料后,其传播路径会随着折射率的分布产生连续弯曲,改变传播方向。传统的声学超材料是无源的,加工完成后几何结构是固定的,其工作频率或所实现的功能不能改变,这严重阻碍了声学超材料的发展。为了克服这个约束,近年来可调声学超材料越来越引起人们的关注。然而,绝大多数目前所报道的可调声学超材料都是通过调控声波的幅度切换带隙,有些调控机制不是实时的并且结构复杂。因此,设计一种结构简单、实时可调的多功能声学超材料成为当前首要解决的问题。柱状菲涅尔透镜24小时服务客服电话。江西热红外透镜价位
菲涅尔透镜的应用发展趋势。红外透镜定制价格
在一些实施例中,衬底302是玻璃衬底(例如,pyrex衬底或硼硅玻璃衬底)或蓝宝石衬底(al2o3)。根据实施例,横跨衬底302的表面的每个vcsel结构304彼此各不相同。每个vcsel结构304包括具有多个镜像层(例如,布拉格反射器)的层堆叠,这些镜像层将多个量子阱层夹在中间,以生成从每个vcsel结构304的顶部传导出来并且沿衬底302的表面的法线的激光辐射。每个vcsel304可以按顺序布置在衬底302的整个表面。在一个示例中,vcsel304被布置在2d阵列图案中,每个vcsel在横跨衬底302的表面的x方向和y方向上相隔相同的距离。也可以按照其他顺序模式布置vcsel304,或者可以将其被布置在伪随机图案中。尽管衬底302被示出为具有圆形,但这不是限制性的,并且衬底302可以具有任何形状和大小。在一些实施例中,衬底302是来自在x方向和y方向上具有毫米或厘米级的尺寸的较大衬底的冲模(die)。另外,在一些实施例中,从数百个vcsel到数百万个vcsel甚至更多的任意数目的vcsel304可以被布置在衬底302上。图4示出了根据实施例的具有***多个vcsel402和第二多个vcsel404的衬底302的侧视图。***多个vcsel402和第二多个vcsel404中的每个vcsel单独地从衬底302的表面向外延伸。红外透镜定制价格
深圳市芯华利实业有限公司位于福城街道办章阁社区诚基工业园A栋5楼。芯华利实业致力于为客户提供良好的微波雷达感应模块(传感器,红外人体感应模块,菲涅尔镜片,PIR透镜,单面、双面、多层PCB板,一切以用户需求为中心,深受广大客户的欢迎。公司注重以质量为中心,以服务为理念,秉持诚信为本的理念,打造电子元器件良好品牌。在社会各界的鼎力支持下,持续创新,不断铸造高质量服务体验,为客户成功提供坚实有力的支持。