企业商机
SEMIKRON西门康IGBT模块基本参数
  • 品牌
  • 西门康
  • 型号
  • 全系列
SEMIKRON西门康IGBT模块企业商机

    公共栅极单元100与第1发射极单元101和第二发射极单元201之间通过刻蚀方式进行隔开;第二表面上设有工作区域10和电流检测区域20的公共集电极单元200;接地区域30则设置于第1发射极单元101内的任意位置处;电流检测区域20和接地区域30分别用于与检测电阻40连接,以使检测电阻40上产生电压,并根据电压检测工作区域10的工作电流。具体地,工作区域10和电流检测区域20具有公共栅极单元100和公共集电极单元200,此外,电流检测区域20还具有第二发射极单元201和第三发射极单元202,检测电阻40则分别与第二发射极单元201和接地区域30连接。此时,在电流检测过程中,工作区域10由公共栅极单元100提供驱动,以使公共集电极单元200上的电流ic通过第二发射极单元201达到检测电阻40,从而可以在检测电阻40上产生测试电压vs,进而可以根据该测试电压vs检测工作区域10的工作电流。因此,在上述电流检测过程中,电流检测区域20的第二发射极单元201相当于没有公共栅极单元100提供驱动,即对于igbt芯片的电子和空穴两种载流子形成的电流,电流检测区域20的第二发射极单元201只获取空穴形成的电流作为检测电流,从而避免了检测电流受公共栅极单元100的电压的影响。 反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。云南代理SEMIKRON西门康IGBT模块推荐货源

SEMIKRON西门康IGBT模块

    将igbt模块中双极型三极管bjt的集电极和绝缘栅型场效应管mos的漏电极断开,并替代包含镜像电流测试的电路中的取样igbt,从而得到包含无栅极驱动的电流检测的igbt芯片的等效测试电路,即图5中的igbt芯片结构,从而得到第二发射极单元201和第三发射极单元202,此时,bjt的集电极单独引出,即第二发射极单元201,作为测试电流的等效电路,电流检测区域20只取bjt的空穴电流作为检测电流,且,空穴电流与工作区域10的工作电流成比例关系,从而通过检测电流检测区域20中的电流即可得到igbt芯片的工作区域10的电流,避免了现有方法中栅极对地电位变化造成的偏差,提高了检测电流的精度。此外,在第1表面上,电流检测区域20设置在工作区域10的边缘区域,且,电流检测区域20的面积小于工作区域10的面积。此外,igbt芯片为沟槽结构的igbt芯片,在电流检测区域20和工作区域10的对应位置内分别设置多个沟槽,可选的,电流检测区域20和工作区域10可以同时设置有多个沟槽,或者,工作区域10设置有多个沟槽,本发明实施例对此不作限制说明。以及,当设置有沟槽时,在每个沟槽内还填充有多晶硅。此外,在第1表面和第二表面之间,还设置有n型耐压漂移层和导电层。 新疆代理SEMIKRON西门康IGBT模块厂家供应当前市场上销售的多为此类模块化产品,一般所说的IGBT也指IGBT模块。

云南代理SEMIKRON西门康IGBT模块推荐货源,SEMIKRON西门康IGBT模块

    分两种情况:②若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。②若栅-射极电压UGE>Uth,栅极沟道形成,IGBT呈导通状态(正常工作)。此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降低。IGBT各世代的技术差异回顾功率器件过去几十年的发展,1950-60年代双极型器件SCR,GTR,GTO,该时段的产品通态电阻很小;电流控制,控制电路复杂且功耗大;1970年代单极型器件VD-MOSFET。但随着终端应用的需求,需要一种新功率器件能同时满足:驱动电路简单,以降低成本与开关功耗、通态压降较低,以减小器件自身的功耗。1980年代初,试图把MOS与BJT技术集成起来的研究,导致了IGBT的发明。1985年前后美国GE成功试制工业样品(可惜后来放弃)。自此以后,IGBT主要经历了6代技术及工艺改进。从结构上讲,IGBT主要有三个发展方向:1)IGBT纵向结构:非透明集电区NPT型、带缓冲层的PT型、透明集电区NPT型和FS电场截止型;2)IGBT栅极结构:平面栅机构、Trench沟槽型结构;3)硅片加工工艺:外延生长技术、区熔硅单晶;其发展趋势是:①降低损耗②降低生产成本总功耗=通态损耗(与饱和电压VCEsat有关)+开关损耗(EoffEon)。

    作为工作区域10和电流检测区域20的公共集电极单元200。此外,当空穴收集区8内设置有沟槽时,如图10所示,此时空穴收集区8中的沟槽与空穴收集区电极金属3接触,即接触多晶硅13。可选的,在图7的基础上,图11为图7中的空穴收集区电极金属3按照b-b’方向的横截图,如图11所示,此时,电流检测区域20的空穴收集区8与空穴收集区电极金属3接触,且,与p阱区7连通;当空穴收集区8通过设置有多晶硅5的沟槽与p阱区7隔离时,横截面如图12所示,此时,如果工作区域10设置有多晶硅5的沟槽终止于空穴收集区8的边缘时,则横截面如图13所示,且,空穴收集区8内是不包含设置有多晶硅5的沟槽的情况。此外,当空穴收集区8内包含设置有多晶硅5的沟槽时,如图14所示,此时,空穴收集区8的沟槽通过p阱区7与工作区域10内的设置有多晶硅5的沟槽隔离,这里空穴收集区8的沟槽与公共集电极金属接触并重合。因此,本发明实施例提供的一种igbt芯片,在电流检测区域20内没有开关控制电级,即使有沟槽mos结构,沟槽中的多晶硅5也与公共集电极单元200接触,且,与公共栅极单元100绝缘。又由于电流检测区域20中的空穴收集区8为p型区,可以与工作区域10的p阱区7在芯片横向上联通为一体。 随着节能环保等理念的推进,此类产品在市场上将越来越多见。

云南代理SEMIKRON西门康IGBT模块推荐货源,SEMIKRON西门康IGBT模块

    少数载流子)对N-区进行电导调制,减小N-区的电阻RN,使高耐压的IGBT也具有很小的通态压降。当栅射极间不加信号或加反向电压时,MOSFET内的沟道消失,PNP型晶体管的基极电流被切断,IGBT即关断。由此可知,IGBT的驱动原理与MOSFET基本相同。①当UCE为负时:J3结处于反偏状态,器件呈反向阻断状态。②当uCE为正时:UC<UTH,沟道不能形成,器件呈正向阻断状态;UG>UTH,绝缘门极下形成N沟道,由于载流子的相互作用,在N-区产生电导调制,使器件正向导通。1)导通IGBT硅片的结构与功率MOSFET的结构十分相似,主要差异是JGBT增加了P+基片和一个N+缓冲层(NPT-非穿通-IGBT技术没有增加这个部分),其中一个MOSFET驱动两个双极器件(有两个极性的器件)。基片的应用在管体的P、和N+区之间创建了一个J,结。当正栅偏压使栅极下面反演P基区时,一个N沟道便形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在,则J1将处于正向偏压,一些空穴注入N-区内,并调整N-与N+之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。的结果是在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET电流)。 这些IGBT是汽车级别的,属于特种模块,价格偏贵。云南代理SEMIKRON西门康IGBT模块推荐货源

尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。云南代理SEMIKRON西门康IGBT模块推荐货源

    该电场会阻止P区空穴继续向N区扩散。倘若我们在发射结添加一个正偏电压(p正n负),来减弱内建电场的作用,就能使得空穴能继续向N区扩散。扩散至N区的空穴一部分与N区的多数载流子——电子发生复合,另一部分在集电结反偏(p负n正)的条件下通过漂移抵达集电极,形成集电极电流。值得注意的是,N区本身的电子在被来自P区的空穴复合之后,并不会出现N区电子不够的情况,因为b电极(基极)会提供源源不断的电子以保证上述过程能够持续进行。这部分的理解对后面了解IGBT与BJT的关系有很大帮助。MOSFET:金属-氧化物-半导体场效应晶体管,简称场效晶体管。内部结构(以N-MOSFET为例)如下图所示。MOSFET内部结构及符号在P型半导体衬底上制作两个N+区,一个称为源区,一个称为漏区。漏、源之间是横向距离沟道区。在沟道区的表面上,有一层由热氧化生成的氧化层作为介质,称为绝缘栅。在源区、漏区和绝缘栅上蒸发一层铝作为引出电极,就是源极(S)、漏极(D)和栅极(G)。上节我们提到过一句,MOSFET管是压控器件,它的导通关断受到栅极电压的控制。我们从图上观察,发现N-MOSFET管的源极S和漏极D之间存在两个背靠背的pn结,当栅极-源极电压VGS不加电压时。 云南代理SEMIKRON西门康IGBT模块推荐货源

与SEMIKRON西门康IGBT模块相关的文章
山东SEMIKRON西门康IGBT模块代理商 2024-09-10

空穴收集区8可以处于与第1发射极单元金属2隔离的任何位置,特别的,在终端保护区域的p+场限环也可以成为空穴收集区8,本发明实施例对此不作限制说明。因此,本发明实施例提供的igbt芯片在电流检测过程中,通过检测电阻上产生的电压,得到工作区域的电流大小。但是,在实际检测过程中,检测电阻上的电压同时抬高了电流检测区域的mos沟槽沟道对地电位,即相当降低了电流检测区域的栅极电压,从而使电流检测区域的mos的沟道电阻增加。当电流检测区域的电流越大时,电流检测区域的mos的沟道电阻就越大,从而使检测电压在工作区域的电流越大,导致电流检测区域的电流与工作区域电流的比例关系偏离增大,产生大电流下的...

与SEMIKRON西门康IGBT模块相关的问题
信息来源于互联网 本站不为信息真实性负责