光电二极管,光电二极管又称光敏二极管,英文名称为Photo-Diode,光电二极管是在反向电压作用之下工作的,在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。光电二极管和发光二极管外形很像,只不过前者是被动接受光源导通电路,后者是主动发出光源,因此光电二极管的发光方向是向内的,表示是外部照时进来的光源,原理图库和发光二极管有点不同。二极管还可用作开关,通过控制正向或反向电压,实现电路的开闭。深圳快恢复二极管加工
晶体二极管分类如下:1、点接触型二极管,点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。2、外延型二极管,用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。深圳快恢复二极管加工在选型二极管时,需考虑反向击穿电压、反向恢复时间和较大耗散功率等参数。
下面对二极管伏安特性曲线加以说明:正向特性,二极管两端加正向电压时,就产生正向电流,当正向电压较小时,正向电流极小(几乎为零),这一部分称为死区,相应的A(A′)点的电压称为死区电压或门槛电压(也称阈值电压),硅管约为0.5V,锗管约为0.1V,如图中OA(OA′)段。当正向电压超过门槛电压时,正向电流就会急剧地增大,二极管呈现很小电阻而处于导通状态。这时硅管的正向导通压降约为0.6~0.7V,锗管约为0.2~0.3V,如图中AB(A′B′)段。二极管正向导通时,要特别注意它的正向电流不能超过较大值,否则将烧坏PN结。
二极管的反向特性:当外加反向电压时,所加的反向电压加强了内电场对多数载流子的阻挡,所以二极管中几乎没有电流通过。但是这时的外电场能促使少数载流子漂移,所以少数载流子形成很小的反向电流。由于少数载流子数量有限,只要加不大的反向电压就可以使全部少数载流子越过PN结而形成反向饱和电流,继续升高反向电压时反向电流几乎不再增大。当反向电压增大到某一值(曲线中的D点)以后,反向电流会突然增大,这种现象叫反向击穿,这时二极管失去单向导电性。所以一般二极管在电路中工作时,其反向电压任何时候都必须小于其反向击穿时的电压。即:当V<0时,二极管处于反向特性区域。二极管的整流作用可将交流转化为直流。
二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管现已很少见到,比较常见和常用的多是晶体二极管。二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生较早的半导体器件之一,其应用也非常普遍。二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降会随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。在选择二极管时,应根据实际需求和工作环境进行综合考虑。南京整流二极管
二极管在保护电路中扮演着重要角色,能有效防止电路过压或过流。深圳快恢复二极管加工
在1884年,爱迪生被授予了此项发明的专业技术。由于当时这种装置实际上并不能看出实用价值,这项专业技术更多地是为了防止别人声称较早发现了这一所谓“爱迪生效应”。20年后,约翰·弗莱明(爱迪生前雇员)发现了这一效应的实用价值,它可以用来制作精确检波器。1904年11月16日,头一个真正的热离子二极管——弗莱明管,由弗莱明在英国申请了专业技术。1874年,德国物理学家卡尔·布劳恩发现了晶体的“单向传导”的能力 ,并在1899年将晶体整流器申请了专业技术 [9] 。氧化亚铜和硒整流器则是在1930年代为了供电应用而发明的。深圳快恢复二极管加工