散热结构的创新同样关键。宁仪信息与材料供应商合作,开发了高导热率的氮化铝(AlN)热沉,其热导率达200W/(m·K),较传统铜热沉提升了3倍;同时,在热沉表面制备了微通道结构,通过强制对流增强散热效率。在某型高功率QCL的开发中,团队将微通道热沉与脉冲驱动技术结合,使激光器在10W输出功率下仍能稳...
1994年4月,贝尔实验室在《科学》上报道了***个子带间量子级联激光器。带间级联和量子级联激光器的研究都源于早期对于半导体超晶格的研究以及通过子带间跃迁实现激光器的探索。在带间级联激光器提出的2~3年内,空穴注入区就已经提出并加入到了带间级联激光器的结构中。同时,W型二类量子阱的概念也被提出,并取代了原先的单边型的二类量子阱。空穴注入区和W型有源区的设计直到***也一直被采用。1997年,由休斯顿大学和桑迪亚国家实验室合作完成的***台可达170K低温工作的带间级联激光器被报道出来,此后,对于二类量子阱的研究也取得了一定进展,而带间级联激光器也在1998~2000年工作温度逐渐提升至250~286K,微分量子效率超过了传统极限的100%,从而证实了级联过程。里程碑式的突破是在2002年,研究人员Yang等实现了***台室温脉冲激射的带间级联激光器,由18个周期构成。 在光化学和生物学领域,可调谐激光器可以用于研究分子结构和生物过程;湖南水QCL激光器多少钱
作为半导体激光技术发展的里程碑,量子级联激光器(QCL)使中远红外波段高可靠、高功率和高特征温度半导体激光器的实现成为可能,为气体分析等中红外应用提供了新型光源,因此QCL日益受到关注。尤其是近10年,越来越多的科研人员开始研究QCL在气体检测方面的应用,使得它的优势和潜力被更多的认识和挖掘。中远红外量子级联激光器(QCL)众所周知,QCL属于新一代半导体激光器,它的特性不同于传统半导体激光器。用中科院半导体所刘峰奇研究员的“两层含义”解释,应该更加形象。首先是量子含义,是指激光器由纳米级厚度的半导体异质结超薄层构成,利用量子限制效应,通过调节每层材料的厚度和子带间距,从而调节波长;其次是级联含义,它的有源区由多级耦合量子阱串接组成,可实现单电子注入的倍增光子输出,可望获得大功率,而普通的半导体激光器是利用电子空穴对的复合发射光子,这是普通激光器不具备的一个性能。 西藏NOQCL激光器哪家好QCL激光器的基本结构包括FP-QCL、DFB-QCL和ECqcL。
量子级联激光器是基于多个量子阱异质结中掩埋次能级跃迁的单极半导体注入激光器,它们是通过能带工程并通过分子束外延生长方法得到的。QCL激光器的输出波长依赖于量子阱和作用区掩埋层的厚度而不是激光材料的能级。由于QCL输出波长不受带隙宽度的限制,因而能够被制成在中红外波长区较宽范围里输出。QCL的输出波长区可以从µm到60µm,激光输出功率可以达到几个mW。QCL在脉冲工作方式下可以工作在室温下,并且已经被用于痕量气体的光谱检测,但由于脉冲激光固有特点使其线宽相对较宽。虽然单模连续输出DFB-QCL已早有报道,但到目前为止,还没有痕量气体检测的报道。鉴于目前中红外光谱区传统激光技术存在的需要低温制冷等限制,利用技术成熟的近红外激光光源的参量频率转换实现室温下连续波中红外相干光源输出是一个有效的补充。在中红外光谱相干光输出的参量过程主要有光参量振荡(OPO)和差频变换(DFG)。
当红外辐射的能量与气体分子振动跃迁所需的能量相匹配时,气体分子会吸收特定波长的红外光,导致透过光的强度减弱,从而形成特征吸收峰。辐射光子的能量与分子振动跃迁的能量差相等。l分子振动伴随偶极矩的变化(红外活性)。分子在红外光谱中表现出基频、倍频和组合频吸收峰。l每种气体分子具有独特的红外吸收谱带,这种特征吸收峰可以用来识别气体种类。绝大多数气态化学物质在中红外光谱区(≈2-25µm)都显示出基本的振动吸收带,这些基本带对光的吸收提供了一种几乎通用的检测手段。光学技术的主要特征是对痕量气体的非侵入式原位检测能力。目前中红外激光在定量痕量气体检测中的应用必将代替近红外成为下一代高精度的选择。进入21世纪全球环境问题日益突出,各国都在在努力减少温室气体排放。二氧化碳(CO2)通常被称为温室气体,但其他使全球环境恶化的气体还包括二氧化硫(SO2)和二氧化氮(NO2)。此外,在气体泄漏检测和性气体的集中监控是预防灾难中激光法可以采取有效报警措施从而可以避免风险于灾难之前。激光吸收光谱法是检测微量气体的方法之一。它使用分布式反馈激光二极管(DFB-LD)检测某种气体,该二极管具有特定于该气体的光吸收波长。 针对部分疾病,目前已有许多基于 TDLAS 技术的无创检测方法,且效果明显。
在工业检测方面,量子级联激光器以其小型化和集成化的设计,完美适应了现代工业的需求。它能够以更低的能耗和更小的体积完成复杂的检测任务。这对于降低企业的运营成本,提高生产效率,具有重要的推动作用。许多企业通过引入量子级联激光器技术,成功减少了设备占用空间,并提升了生产线的自动化程度。综合来看,量子级联激光器凭借其高效、灵活和经济的特性,正逐步改变各行各业的技术格局。无论是在环境监测、医疗成像还是工业检测领域,量子级联激光器都为客户提供了切实可行的解决方案,帮助企业提高效率、降低成本,从而在竞争激烈的市场环境中脱颖而出。随着技术的不断进步和应用范围的扩大,量子级联激光器的未来将更加光明,值得行业内外的共同关注。 通讯是DFB的主要应用,如1310nm,1550nm DFB激光器的应用,这里主要介绍非通讯波段DFB激光器的应用。河北NH3QCL激光器哪家好
分布式反馈激光二极管(DFB-LD)检测某种气体,该二极管具有特定于该气体的光吸收波长。湖南水QCL激光器多少钱
带间级联激光器(ICL)是实现3~5μm波段中红外激光器的重要前沿,其在半导体光电器件技术、气体检测、医学医疗以及自由空间光通信等领域具有重要科学意义和应用价值。近年来,半导体带间级联激光器的量子阱能带理论设计方法和激光器制备**技术得到迅速提升。带间级联激光器是一种以Å族体系为主,通过量子工程的能带设计及其材料外延、工艺制作而成的可以工作于中红外波段的激光器。由于结合了传统的量子阱激光器较长的上能级载流子复合寿命,以及量子级联激光器(QCL)通过级联结构实现较高内量子效率的优点,在中红外波段具有较大的优势。研究背景中红外波段包含了许多气体分子的吸收峰,对于气体分子而言,在中红外波段的中心吸收截面一般比其在近红外区的中心吸收截面高几个数量级。因此,为了获得更高的灵敏度和更低的检测限,利用中红外的可调谐半导体激光器吸收光谱技术(TDLAS)可以实现对特殊或有毒气体的检测。常见的位于中红外波段的气体分子如图1所示,诸如矿井气体甲烷(CH4)分子吸收峰位于3260nm,一氧化碳(CO)分子吸收峰位于4610nm,二氧化碳(CO2)分子吸收峰位于4230nm,氯化氢(HCl)分子吸收峰位于3395nm,溴化氢(HBr)分子吸收峰位于4020nm。 湖南水QCL激光器多少钱
散热结构的创新同样关键。宁仪信息与材料供应商合作,开发了高导热率的氮化铝(AlN)热沉,其热导率达200W/(m·K),较传统铜热沉提升了3倍;同时,在热沉表面制备了微通道结构,通过强制对流增强散热效率。在某型高功率QCL的开发中,团队将微通道热沉与脉冲驱动技术结合,使激光器在10W输出功率下仍能稳...
重庆一氧化氮QCL激光器定制
2025-10-31
安徽新型QCL激光器价格
2025-10-31
NH3QCL激光器封装
2025-10-31
辽宁COQCL激光器型号
2025-10-31
宁夏半导体QCL激光器哪家好
2025-10-31
安徽一氧化氮QCL激光器供应商
2025-10-31
新疆HerriotQCL激光器工厂
2025-10-31
江西新型QCL激光器定制
2025-10-31
青海一氧化氮QCL激光器报价
2025-10-31