光频梳本质上是一种特殊的激光器,其独特之处在于能够产生一系列具有精确延迟的脉冲。在其内部,通过巧妙的设计与复杂的物理过程实现这一特性。以飞秒光频梳为例,飞秒激光器中的锁模机制发挥着关键作用。锁模过程使得激光器输出的脉冲在时间上高度有序,相邻脉冲之间具有精确、稳定的时间延迟。这种精确延迟源于激光器谐振腔内的各种光学元件对光脉冲的精细调控,包括色散补偿元件对脉冲展宽的控制,以及增益介质对脉冲能量的补充与稳定。这些精确延迟的脉冲在频域表现为等间隔的分立光谱,即光频梳的梳齿。在实际应用中,如光学相干层析成像技术里,光频梳产生的精确延迟脉冲可用于对生物组织内部结构进行高分辨率成像,通过分析不同深度组织反射光脉冲的延迟时间,获取组织的详细信息 。光频梳是一种能够产生一系列具有精确延迟脉冲的激光器。工业光频梳应用
光频梳:一种高精度、高分辨率的光学工具。其高精度体现在频率测量的误差可低至 10^-18,相当于 138 亿年(宇宙年龄)只偏差 1 秒;高分辨率则能区分只相差几赫兹的频率成分,远超传统光学工具。这种性能使其在多领域发挥主要作用:在量子科技中,可精确操控原子、离子的量子态,助力量子计算机的研发;在精密制造中,结合光学干涉技术实现纳米级定位,提升芯片制造的光刻精度;在医学诊断中,通过分析血液中微量生物标志物的光谱特征,实现疾病的早期筛查;在基础科学研究中,为验证相对论、探测引力波等前沿课题提供了前所未有的测量手段,堪称 “光学领域的精密天平”。东莞中红外光频梳技术广东朗研科技:光频梳的应用领域。
光频梳对光波频率的精确控制,源于 “硬件校准 + 软件调控” 的双重保障:硬件上,它通过锁模技术固定脉冲重复频率,再结合原子钟或光学参考腔校准,将频率稳定性控制在 10^-18 量级 —— 相当于让 “频率舞者” 的每一步 “舞步”(脉冲频率)误差,比百亿年差 1 秒还小;软件上,科研人员可通过调节激光腔参数、非线性介质类型,精确微调梳齿的频率间隔与覆盖范围,实现从紫外到太赫兹频段的 “按需控频”,就像为舞者定制不同节奏的 “舞曲”。
过去 20 多年间,光频梳技术经历了从萌芽到蓬勃发展的历程,逐步从计量实验室的精密仪器走向更广阔的应用天地。光频梳主要在计量实验室中用于高精度的时间频率计量,作为一种验证科学理论、提升计量精度的前沿技术而存在。随着研究的深入与技术的成熟,其应用领域不断拓展。在通信行业,光频梳用于提升光纤通信的容量与稳定性,助力构建更高效的信息高速公路。在科研领域,光频梳在天文学中用于系外行星探测,通过精确分析恒星光谱变化寻找行星踪迹;在化学、生物学领域,用于分子结构分析、生物分子检测等。在工业生产中,光频梳也应用于精密制造的测量与校准环节。如今,光频梳已融入众多行业,持续为各领域发展注入新动力,其应用边界仍在不断拓展 。精i准测量新篇章:光频梳技术领引科研新未来。
从频域视角来看,光频梳呈现出独特的等间隔分立光谱结构。当对其进行光谱分析时,可清晰观察到一系列离散的频率峰,这些频率峰均匀分布在频域中,彼此间隔相等,恰似一把梳子的齿均匀排列。这种特殊结构源于其产生原理,无论是光调制还是飞秒脉冲产生过程,都能促使激光光谱在频域按特定规律分裂与分布。这一特性赋予光频梳诸多实用价值,它为复杂的光学频率测量提供了清晰的标尺。在对未知光谱进行分析时,通过与光频梳的频率峰对比,能够快速、准确地确定未知光谱的频率位置与特性,极大简化了光学频率相关的研究与应用工作 。我们的飞秒光纤光频梳,就一个字“稳”!工业光频梳应用
光频梳的产生主要有哪几种方式?工业光频梳应用
光频梳的生成和应用需要高精度的光学元件和先进的激光技术作为支撑。生成光频梳主要是锁模激光器,需产生飞秒级超短脉冲,这要求激光介质具备极高的增益效率和稳定性,如掺钛蓝宝石晶体需控制在 0.1℃以内的温度波动。光学谐振腔的镜片需达到 99.99% 以上的反射率,以减少损耗并维持脉冲序列的相干性;相位锁定装置则需将频率间隔误差控制在赫兹级,依赖精密压电陶瓷和微波相位探测器。应用中,宽频谱覆盖需低损耗光纤和超连续谱发生技术,而野外环境下的稳定性则依赖抗振动光学平台和温度补偿系统。这些元件和技术的精度每提升一个量级,光频梳的测量能力就可能实现质的飞跃。工业光频梳应用
光频梳并非普通的脉冲激光器,是时域与频域的耦合——时域上,它输出重复频率稳定的超短脉冲序列,脉冲间延迟可精确调控至飞秒(10^-15秒)甚至阿秒级;频域上,这些脉冲会展开为一系列等间隔、高相干的频率分量,形似梳子的齿均匀分布,“光频梳”的命名便源于此形象特征。实现这一特性的关键是锁模技术:通过主动(如电光调制)或被动(如可饱和吸收)方式,迫使激光腔内不同频率的光场形成固定相位关系,既生成超短脉冲,又保证频域分量的间隔严格等于脉冲重复频率(通常在MHz至GHz量级)。为进一步提升精度,光频梳常与原子钟、光学参考腔结合,将频率稳定性控制在10^-15量级,相当于数百万年误差不超过1秒,远超传统光源...