企业商机
光频梳基本参数
  • 品牌
  • 朗研光电
  • 型号
  • 齐全
  • 尺寸
  • 齐全
  • 产地
  • 广东
  • 可售卖地
  • 全国
光频梳企业商机

在光学测量的漫漫征途中,光频梳宛如一把闪耀的新钥匙。以往,测量连续激光器频率需借助复杂方法,犹如在迷宫中徘徊。光频梳出现后,一切变得简单高效。它能作为光学尺,连接、标定不同波长连续激光器,还能锁定射频参考基准时钟,标定激光频率。在天文学领域,可用于测量天体光谱,帮助科学家分析天体成分与运动状态;在微观世界,助力研究分子光谱,解析分子结构。它让我们突破传统测量局限,踏入更广阔未知领域,不断拓展人类对世界认知的边界 。广东朗研科技:光频梳的应用领域。皮秒光频梳光源

光学频率梳(Optical frequency comb)是一种特殊的激光光源。与普通激光的单频或窄带频谱不同,它的频谱由一系列等间隔的离散频率点组成,形似梳子,故得名 “频梳”;在时间域上,它表现为重复周期稳定的超短脉冲序列,脉冲宽度可低至飞秒级(1 飞秒 = 10^-15 秒)。这种特殊性源于锁模技术 —— 通过在激光谐振腔内引入调制,迫使不同频率的激光模式形成固定相位关系,从而输出相干的脉冲序列。其特性包括宽频谱覆盖(可从紫外延伸至中红外)、频率间隔恒定(由脉冲重复频率决定)、全频谱相干性,这使其成为连接微波频率(电子学)与光学频率(光子学)的 “桥梁”,为跨波段精密测量奠定基础,也是量子信息、光通信等领域的关键光源。飞秒脉冲光频梳测试光频梳是在频域的等间隔的分立光谱,像梳子一样,所以叫光频梳。

光频梳作为一种先进的光学技术,为解决传统激光跟踪仪的缺点提供了新的途径。首先,关于速度问题,光频梳具有极高的光谱精度和稳定性,可以在极短的时间内完成多个目标的同时跟踪。这一特性提高了激光跟踪的速度,使其能够满足快速变化的场景需求。其次,对于需要分时跟踪不同目标的问题,光频梳的多频并行处理能力使得它可以同时跟踪多个目标,无需分时切换。这样不仅可以提高跟踪效率,还能避免因切换目标带来的误差和延迟。此外,由于光频梳技术可以提供连续且稳定的频率源,它在长时间的连续跟踪中具有更好的精度和稳定性。这进一步强化了它在高精度光学计量、遥感、天文观测等领域的应用优势。

光纤激光频率梳利用光纤组件技术,能够实现长时间连续运行,这一特点在诸多领域具有优势。光纤组件的稳定性极高,能够提供稳定的激光输出,使得光纤激光频率梳在运行过程中能够保持极高的频率精度和稳定性。与传统的光学频率梳相比,光纤激光频率梳不受环境干扰的影响,具有更好的抗干扰能力。此外,光纤激光频率梳的连续运行时间长,能够满足长时间工作的需求。在科研、通信、光谱分析等领域,长时间连续运行的激光频率梳能够提供持续、稳定的数据支持,为相关研究和应用提供可靠的保障。另外,光纤激光频率梳的维护成本较低,使用寿命长。由于光纤组件的耐用性和稳定性,光纤激光频率梳在使用过程中能够减少维护和更换的频率,降低了使用成本。光频梳是一种激光源,其光谱由一系列非常精确定义的均匀间隔的频率组成。

在光学频率测量范畴,光频梳的地位举足轻重。以往,光学频率测量面临诸多难题,如频率基准不稳定、测量过程复杂且精度欠佳。光频梳的出现彻底改变了这一局面,它提供了一系列精确且稳定的频率参考点。其梳齿频率间隔高度稳定,如同构建了一座精确的频率 “阶梯”。科学家借助光频梳,能够将光学频率与微波频率紧密关联,实现从微波频段到光频段的高精度频率传递与测量。在光钟系统中,光频梳作为关键部件,对原子跃迁频率进行锁定与测量,极大降低了光钟的频率不确定性,使原子钟精度获得数量级的提升,为全球卫星导航、通信等依赖高精度时间频率的系统筑牢基础。光频梳的起源可以追溯至锁模激光器和窄线宽激光器两个领域。飞秒光频梳光谱宽度

光频梳直接将微波和光学频率连接的特点,使得复杂的频率链技术被迅速取代。皮秒光频梳光源

传统光学测量中,微波频标与光频间存在 “测量鸿沟”,需通过复杂换算间接获取光频数据,误差易累积;而光频梳如同 “频率桥梁”,其梳齿可直接衔接微波频段与光频段,让科研人员像用尺子量长度般,直接读取光波的精确频率值。这为光学研究打开多扇新大门:在基础光学领域,它助力科学家重新定义 “秒”(基于光学频率标准)与 “米”(基于光的波长),让基本物理单位的精度提升两个量级;在分子光学研究中,精确的频率控制能让激光 “瞄准” 特定分子能级,捕捉到分子振动、转动的瞬态过程,比如解析光合作用中光能转化的微观机制;在量子光学领域,通过调控光频梳的梳齿相位,可实现量子比特的耦合,为量子纠缠态的稳定观测、量子通信的抗干扰传输提供重要支撑,让原本停留在理论层面的量子光学实验,逐步走向实际应用。皮秒光频梳光源

与光频梳相关的文章
超快光纤光频梳发展 2025-11-05

光频梳并非普通的脉冲激光器,是时域与频域的耦合——时域上,它输出重复频率稳定的超短脉冲序列,脉冲间延迟可精确调控至飞秒(10^-15秒)甚至阿秒级;频域上,这些脉冲会展开为一系列等间隔、高相干的频率分量,形似梳子的齿均匀分布,“光频梳”的命名便源于此形象特征。实现这一特性的关键是锁模技术:通过主动(如电光调制)或被动(如可饱和吸收)方式,迫使激光腔内不同频率的光场形成固定相位关系,既生成超短脉冲,又保证频域分量的间隔严格等于脉冲重复频率(通常在MHz至GHz量级)。为进一步提升精度,光频梳常与原子钟、光学参考腔结合,将频率稳定性控制在10^-15量级,相当于数百万年误差不超过1秒,远超传统光源...

与光频梳相关的问题
信息来源于互联网 本站不为信息真实性负责