gps时钟是基于新型gps高精度定位授时模块开发的基础型授时应用产品,能够按照用户需求输出符合规约的时间信息格式,从而完成同步授时服务,其主要原理是通过gps或其他卫星导航系统的信号驯服晶振,从而实现高精度的频率和时间信号输出,是目前达到纳秒级授时精度和稳定度在1e12量级频率输出的有效方式。gps时钟接收装置是通过与gps时钟系统连接,及时更新准确的时间的装置,被广泛应用于汽车、轮船等其他设备上,根据使用环境的不同,gps时钟接收装置的形状大小也是有所不同的,对于一些体积中等的轮船用gps时钟接收装置来说,一般是直接通过螺丝固定在轮船上的,而当装置出现故障,需要进行维修或是更换的时候,螺丝固定方式使得在拆卸装置的时候比较费力,若是操作不当还容易导致螺丝帽损毁,使得装置很难拆卸下来。淄博正瑞电子以***,高质量的产品,满足广大新老用户的需求。潍坊卫星同步时钟系统
秒长取国际单位制SI秒,起始历元为2006年1月1日0时0分0秒协调世界时(UTC)。BDT与UTC的偏差保持在100ns以内。变电站GPS时间同步系统由主时钟、扩展时钟和时间同步信号传输通道组成,主时钟和扩展时钟均由时间信号接收单元、时间保持单元和时间同步信号输出单元组成。因智能变电站对时间同步采集需求较高,为保证实时数据采集时间的一致性,智能变电站应配置一套全站公用的时间同步系统,主时钟应双重化配置。时钟同步精度和守时精度满足站内所有设备的对时精度要求,异常时钟信息的防误、主从时钟的传输延时补偿等满足智能化变电站同步采样要求。智能变电站宜采用主备式时间同步系统,由两台主时钟、多台从时钟和信号传输介质组成,为被授时设备/系统对时。主时钟采用双重化配置,支持北斗授时系统和GPS标准授时信号,优先采用北斗授时系统。主时钟对从时钟授时,从时钟为被授时设备/系统对时。时间同步精度和守时精度满足站内所有设备的对时精度要求。站控层设备宜采用SNTP对时方式,间隔层和过程层设备宜采用直流IRIG-B码对时方式。条件具备时也可采用IEEE1588网络对时。根据需要和技术要求,主时钟可留有接口,用来接收上一级时间同步系统下发的有线时间基准信号。德州北斗卫星同步时钟系统淄博正瑞电子生产的产品受到用户的一致称赞。
所述输出控制模块在所述同步信号的同步下,开始按照频率f0生成信息码,信息码通过bpsk方式调制到所述同频同相的载波上;所述信息码生成模块的输出端、时钟恢复电路的输出端均连接至bpsk调制器,bpsk调制器与发射电路连接;所述发射电路包括功率放大器pa和发射天线,所述发射电路用于将bpsk调制器调制好的伪卫星信号通过发射天线发射到待定位空间中,为伪卫星用户提供伪卫星定位信号。多个伪卫星信号生成模块中的bpsk调制器与基准信号源模块中的bpsk调制器功能一致。所述f0为伪随机码的频率,所述fc为卫星的载波频率。进一步推荐的,所述基准信号源用于产生整个系统的基准时钟信号,其频率为2fc;分频器用于将所述基准信号源输出的信号进行分频,产生周期为两倍卫星帧周期的信号;所述基准信号源模块中的bpsk调制器用于产生每隔一个帧周期出现一次180°相位跳变的时钟信号。推荐的,每个伪卫星信号生成模块在布置时需要通过调整,使得各伪卫星信号生成模块与基准信号源模块的距离均完全相等为d,保证各个伪卫星生成模块接收到的时钟信号和同步信号严格同相。进一步推荐的,每个伪卫星信号生成模块中的伪随机码数据生成模块。
即所谓的原子频率标准(原子频标)。以原子频标为基准的时间计量系统称为原子时,简称TA。国际时间局建立的原子时被国际计量大会指定为国际原子时,命名为TAI。3、协调世界时:UTC我国电力系统主要使用协调世界时(UTC),它了国际原子时TAI和世界时UT1这两种时间尺度的结合。UTC的定义为UTC(t)—TAI(t)=N秒(N为整数)|UTC(t)—UT1(t)|<UTC的具体实施办法是取消频偏调整,使UTC秒长严格等于TAI秒长,在时刻上又使UTC接近于UT1。这样由地球自转速率不均匀性造成的UT1与TAI的差值采用在UTC时刻中加1s或减1s的闰秒(即跳秒)措施来补偿。闰秒的时间定在6月30日或12月31日,也就是说使UTC在6月30日或12月31日这两个日期的一分钟为61s或者59s。由于地球自转速度的不均匀性,近20年来,世界时每年比原子时大约慢1s,二者间的差逐年累积,到2013年已达35s。时钟源用于提供标准时钟信号,授时系统主要包括无线授时和有线授时两类。无线授时系统包括美国GPS(GlobalPositioningSystem)导航系统、欧洲伽利略(Galileo)导航系统、中国北斗导航系统和俄罗斯全球导航卫星系统(GLINASS)等;有线授时系统以网络或专线作为载体,例如通信网络授时系统。淄博正瑞电子提供周到的解决方案,满足客户不同的服务需要。
随着计算机和网络通信技术的飞速发展,火电厂热工自动化系统数字化、网络化的时代已经到来。这一方面为各控制和信息系统之间的数据交换、分析和应用提供了更好的平台、另一方面对各种实时和历史数据时间标签的准确性也提出了更高的要求。下面小编为大家介绍GPS时钟的相关知识。无线GPS时钟系统构成:一级母钟设于控制中心,包括外部时间信号接收机(GPS)、铷钟、时钟信号处理、产生及分配单元,采用主、备两个母钟组成,主备钟之间能够自动和手动切换、互为备用。外部时钟信号接收装置由GPS和铷钟信号接口单元组成,可接收GPS和铷钟校时信号(并预留其它接入),两路互为备用,并可自动倒换;GPS时钟源的频率准确性大于10-10,后备铷钟的频率准确性大于10-9。中心一级母钟接收外部标准时间信号。时钟系统的网管设备设于控制中心通信网管中心,用于本工程时钟子系统的监控。中心一级母钟采用19英寸标准机柜,高度为2200mm。子钟通常设置于控制中心调度大厅及有关管理用房,车辆段有关管理用房。母钟与子钟之间的信号传输可以采用RS422接口也可以采用以太网接口方式,本工程采用以太网接口。子钟的电源可以采用集中供电也可以采用就近取电方式,建议采用就近取电方式。淄博正瑞电子通过专业的知识和可靠技术为客户提供服务。潍坊卫星同步时钟系统
淄博正瑞电子产品**国内。潍坊卫星同步时钟系统
脉冲宽度检测电路的输入信号经过延时电路后形成延时信号;所述脉冲宽度检测电路通过检测所述鉴相器up端的脉冲宽度,在相位跳变时产生负脉冲,达到提取所述的同步信号的目的。所述信息码生成模块包括星历数据生成模块、伪随机码数据生成模块、与逻辑模块、输出控制模块、分频器1和分频器2,所述星历数据生成模块将伪卫星信号生成模块的坐标位置编写为星历参数、生成所需要的星历信息数据,所述伪随机码生成模块产生与gnss信号兼容的伪随机码;所述分频器1的输入端连接至时钟恢复电路的压控振荡器,分频器1的输出端连接伪随机码数据生成模块,伪随机码数据生成模块用于生成伪随机码,所述分频器2的输入端连接至分频器1,分频器2的输出连接星历数据生成模块,星历数据生成模块用于生成星历数据,星历数据生成模块、伪随机码数据生成模块均连接至所述与逻辑模块,与逻辑模块用于将星历数据和伪随机码进行与运算、生成所述信息码,与逻辑模块输出端连接至输出控制模块,所述输出控制模块与脉冲宽度检测电路的输出端连接,所述输出控制模块的控制信号引自脉冲宽度检测电路的输出信号,输出控制模块的输出端为所述信息码生成模块的输出端,信息码生成模块的输出信号为信息码。潍坊卫星同步时钟系统
山东正瑞电子有限公司主要经营范围是电子元器件,拥有一支专业技术团队和良好的市场口碑。公司业务涵盖无线测温系统,电缆测温系统,卫星时钟,六氟化硫气体报警系统等,价格合理,品质有保证。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于电子元器件行业的发展。山东正瑞电子供应秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。
高纯锗伽玛谱仪系列需要选择探头输出信号的极性。粗调在2~100之间可调,粗调倍数将会决定处理哪些幅度...
【详情】不同能量辐射检测比较: 不同能量辐射的检测方法和难度存在差异。低能辐射如α射线,穿透能力弱,检测时需...
【详情】新漫高纯锗伽玛能谱仪系列配套使用的数字化谱仪是由GBS公司生产的MCA527型号的数字多道分析器。M...
【详情】新漫高纯锗系列谱分析软件在实际操作中,减少用户等待时间,对用户的交互行为迅速反应,界面设计可以说是十...
【详情】人工检测与智能检测比较: 人工辐射检测和智能辐射检测各有优劣。人工检测依赖检测人员的经验和技能,能根...
【详情】辐射检测是利用专业设备与技术,对环境中电离辐射(如α、β、γ射线)或电磁辐射(如射频、微波)的强度、...
【详情】ISO9001标准涉及了技术法规、标准和合格评定程序。世贸/技术壁垒协定(WTO/TBT)也是WTO...
【详情】新漫为用户提供7×24小时提供技术支持服务,负责解答用户在设备使用中遇到的问题,并及时提出...
【详情】随着人们对室内环境质量的关注度不断提高,室内辐射检测也逐渐受到重视。室内可能存在天然放射性物质(如花...
【详情】不同品牌辐射检测仪比较: 市场上常见品牌 A 和品牌 B 的辐射检测仪各有特点。品牌 A 仪器精度高...
【详情】上海新漫传感科技有限公司积极自主创新,率先致力于液闪测量技术及其应用的研究开发工作,已成为国内液闪测...
【详情】