蛋白质的生物合成及加工修饰:原核细胞中每种mRNA分子常带有多个功能相关蛋白质的编码信息,以一种多顺反子的形式排列,在翻译过程中可同时合成几种蛋白质;而真核细胞中,每种mRNA一般只带有一种蛋白质编码信息,是单顺反子的形式。mRNA以它分子中的核苷酸排列顺序携带从DNA传递来的遗传信息,作为蛋白质生物合成的直接模板,决定蛋白质分子中的氨基酸排列顺序。不同的蛋白质有各自不同的mRNA,mRNA除含有编码区外,两端还有非编码区。非编码区对于mRNA 的模板活性是必需的,特别是5'端非编码区在蛋白质合成中被认为是与核糖体结合的部位。氨基酸的作用:或进入三羧循环氧化分解成CO2和H2O,并放出能量。99548-56-8
蛋白质结构预测和分子动力学:作为结构基因组研究的互补,蛋白质结构预测的目标是发展出有效的能够提供未知结构(未通过实验方法得到)蛋白质的可信的结构模型。目前较为成功的结构预测方法是同源建模;这一方法是利用序列相似的蛋白质(已知结构)的结构作为“模板”。而结构基因组的目标正是通过解析大量蛋白质的结构来为同源建模提供足够的模板以获得剩余的未解析的同源蛋白结构。从序列相似性较差的模板计算出精确的结构模型对于同源建模法还是一个挑战,问题在于序列比对准确性的影响,如果能够获得“完美”的比对结果,则能够获得精确的结构模型。87691-88-1氨基酸必须首先通过氨基酸转运体从细胞器和细胞进入血液循环。
蛋白质的特性:大肠杆菌与密码子用法:—般来说,在重组蛋白表达宿主的选择中,对原核来源的蛋白质应当只选择大肠杆菌进行表达,而不是真核表达系统,因为通常真核生物的翻译后修饰能力和改善的折叠能力对原核的蛋白来说是不必要的,甚至是不想要的。对于真核的蛋白来说情况就不同了,因为有大量的实例表明,真核的蛋白能在大肠杆菌中进行成功地表达。当使用原核系统表达真核的蛋白时 ,一个非常重要的考虑是: 像所有生物一样,大肠杆菌对密码子的使用有偏性,其tRNA丰度反映了这一偏性。表达含有数个大肠杆菌稀有密码子的真核的蛋白时会受对应的 tRNA丰度的限制而效率不高。
氨基酸的种类:从各种生物体中发现的氨基酸已有180多种,但是参与蛋白质组成的常见氨基酸或称基本氨基酸只有20种。此外,在某些蛋白质中还存在若干种不常见的蛋白质氨基酸。也就是说组成蛋白质的氨基酸包括20种常见的蛋白质氨基酸(或称基本氨基酸)和一些不常见的蛋白质氨基酸(不常见的蛋白质氨基酸都是由相应的常见氨基酸经修饰而来的)。所以组成蛋白质的氨基酸应该多于20种(该书P128列出了10多种不常见的蛋白质氨基酸),只不过常见的或者说基本的只有20种,这20种都是α–氨基酸(确切的说应该是19种α–氨基酸,因为脯氨酸与一般的α–氨基酸不同,它没有自由的α–氨基,属于α–亚氨基酸,可以看成是α–氨基酸的侧链取代了自身氨基上的一个氢原子而形成的杂环结构)。其他不常见的蛋白质氨基酸也是α–氨基酸或α–亚氨基酸。氨基酸的作用与功效:维持足够的胶原纤维和弹性纤维,使皮肤柔滑,细腻富有弹性。
非蛋白质功能:人脑中儿茶酚胺和微量胺的生物合成途径:在人类中,非蛋白质氨基酸也有重要的作用代谢中间产物的生物合成中神经传递素γ-氨基丁酸(伽马氨基丁酸)。许多氨基酸被用来合成其他分子,例如:色氨酸是神经递质血清素的前体。酪氨酸(及其前体苯丙氨酸)是儿茶酚胺神经递质多巴胺、肾上腺素、去甲肾上腺素和各种微量胺的前体。苯丙氨酸是人类苯乙胺和酪氨酸的前体。在植物中,它是多种苯丙酸的前体,在植物代谢中起重要作用。甘氨酸是卟啉如血红素的前体。精氨酸是一氧化氮的前体。鸟氨酸和腺苷甲硫氨酸是多胺的前体天冬氨酸、甘氨酸和谷氨酰胺是核苷酸的前体然而,并不是所有其他丰富的非标准氨基酸的功能都是已知的。蛋白质是由氨基酸以“脱水缩合”的方式组成的多肽链经过盘曲折叠形成的具有一定空间结构的物质。18282-10-5
氨基酸的理化性质:由遗传密码直接编码的20种氨基酸可以根据它们的特性分成几组。99548-56-8
基本含义:蛋白质是由氨基酸以“脱水缩合”的方式组成的多肽链经过盘曲折叠形成的具有一定空间结构的物质。蛋白质中一定含有碳、氢、氧、氮元素,也可能含有硫、磷等元素。蛋白质是由α-氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子化合物。蛋白质就是构成人体组织部位的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。男性缺失蛋白质比女性缺失蛋白质更需要重视,男士一旦缺失蛋白质,会导致男性精子质量下降,精子活力降低以及精子不液化造成男性不育。99548-56-8