所谓无源互调特性是指接头,馈线,天线,滤波器等无源部件工作在多个载频的大功率信号条件下由于部件本身存在非线性而引起的互调效应。通常都认为无源部件是线性的,但是在大功率条件下无源部件都不同程度地存在一定的非线性,这种非线性主要是由以下因素引起的:不同材料的金属的接触;相同材料的接触表面不光滑:连接处不紧密;存在磁性物质等。互调产物的存在会对通信系统产生干扰,特别是落在接收带内的互调产物将对系统的接收性能产生严重影响,因此在GSM系统中对接头,电缆,天线等无源部件的互调特性都有严格的要求。我们选用的厂家的接头的无源互调指标可达到-150dBc,电缆的无源互调指标可达到-170dBc,天线的无源互调指标可达到-150dBc。 天线的安装位置和方向对信号接收或发送的质量有重要影响。西安设计天线放大器
天线设计生要依靠一些***的数学方法和计算机关心设计 [CAD]。**的方法是有限差分时域法(FDTD),这种方法允许辐射构造为任意外形并由多层不同材料构成。对于基站天线,通常分为定向天线和全向天线,在HF,VHF 频段的基站天线及 UHF 频段的全向天线均属线型构造天线,通常用矩量法分析设计;UHF 以上的定向天线大多承受线形振子或贴层鼓励的平板式构造,可以用矩量法和几何绕射理论(GTD 混合法)分析计算,但实际上这类平板型天线完全可以用HP 和 Ansoft 公司推出的 HFSS 软件仿真。借助于设计阅历或简洁理论分析HFSS 很简洁求得这类天线的单元电气特性,利用天线原理的组阵方法可以推得**正确设计结果。华强北转发器天线终端天线的天线带宽决定了它可以接收或发送的信号频率范围。
主瓣之外的所有波瓣通称副瓣或旁瓣。副瓣电平上升、副瓣能量增加时,天线的定向性降低,同时副瓣是干扰的来源,通常是有害的。主瓣与副瓣、副瓣与副瓣之间能量突降的位置称为零点。零点是电场矢量相位变化的结果。设计合适的零点位置可以对抗干扰,反之,将零点区域填充,使能量加强,又能弥补通信覆盖服务区某些盲点。与主瓣指向相差180度位置的副瓣称为背瓣或后瓣,背瓣也常定义为一个区域,移动通信天线中通常是180°土30°区域,将此区域内所有副瓣的比较大电平定义为背瓣电平,主瓣电平与背瓣电平的比值称为前后比。移动通信中通常考察水平面方向图的前后比。对于定向性较强的移动通信基站天线,水平面的半功率波束宽度(0H3B)通常设计为65°和90”,该结果的获得取决于天线辐射单元的结构及其三维电磁边界条件的一体化优化设计。而垂直面的半功率波束宽度(0V3dB)通常很窄,该结果的获得则主要取决于天线在垂直面的比较大尺寸。
作为发射天线,如果基站收发天线共用,且采用双极化方式,则采用垂直和水平正交极化阵子的双极化天线和采用正负45度正交极化阵子双极化天线相比较(假设其它条件相同),在理想的自由空间中(假定手机接收天线是垂直极化),手机接收天线接收的信号前者好于后者3dB左右。但在实际应用环境中,考虑到多径传播的存在,在接收点,各种多径信号经统计平均,上述差别基本消失,各种实验也证明了此结论的正确。但在空旷平坦的平原,上述差异或许还存在,但具体是多少,还有待实验证明,可能会有1-2dB的差异。综上所述,在实际应用中,西种双极化方式的差别不大,目前市场上正负45度正交极化天线比较常见。天线的天线选择还需要考虑天线的适应性和兼容性等因素。
感知电磁波信号感知电磁波信号是天线在无线电通信系统运作中**明显,也是对无线电通信影响**大的能力。无线电通信系统在运作的过程中,会接触各种形式的信号,有的信号电磁波效果强,有的信号电磁波效果弱。而对于一些电磁波较弱的信号,就需要靠天线来进行感知。当天线感知到信号的时候,不仅会对电磁波起到定位作用,还会便于相关工作人员对有效信号的提取。另外,天线在运作的过程中,还会分离电波中的信号,通过这样的方式,不仅能够让信号的效果更佳明显,降低干扰因素的影响,还能有效的提升无线电通信系统接收信号的能力。天线在感知电磁波信号的同时,还能无形的建立与用户之间的联系,让无线电通信能够获得更有价值的信息,从而提升整体的性能。 天线的天线方向图描述了天线在不同方向上的辐射模式。西安定位时间天线测试软件
天线的天线阻抗需要与接收或发送设备的阻抗匹配。西安设计天线放大器
天线提升电磁波的辐射强度也是天线在无线电通信系统中作用的体现,但是如果要想真正实现提升电磁波辐射强度的价值,需要天线能够形成一个完美的天线阵。天线阵是通过对若千个频率相同的天线进行有规律的排列而形成的。天线阵在运作的过程中,会对经过的电磁波进行叠加,当电磁波叠加到一定程度的时候,就能有效的提升电磁波的辐射强度。同时还会在一定程度上改变电磁波辐射的方向,对无线电通信的平稳运行有着非常明显的促进作用。西安设计天线放大器