容器06将柜体01进液口一侧温度较低的冷却液与电子信息设备02内温度较高的冷却液进行隔离,导流管路04一端伸至靠近柜体01的进液口一侧,另一端与散热器的进液口连通,在循环泵05的作用下,柜体01内这部分温度较低的冷却液沿管路进入散热器中以冷却主要发热元件021,从散热器中流出的冷却液进入电子信息设备02后与次要发热元件022进行热交换,吸热后的冷却液从电子信息设备02的出液端024流出。为了增强冷却液与次要发热元件022之间的换热效果,散热器的出液口靠近电子信息设备02的进液端023设置,这样,从散热器中流出的冷却液可以从电子信息设备02的进液端023向出液端024流动,冷却液在流动过程中与次要发热元件022进行热交换,增强了换热效果,并避免了电子信息设备02内形成循环死区。同理,当容器06设置在电子信息设备02的出液端024时,容器06的内部空间与电子信息设备02的内部空间连通,容器06将电子信息设备02内温度较低的冷却液与位于柜体01的出液口一侧的温度较高的冷却液进行隔离,导流管路04的一端伸至靠近柜体01的出液口一侧,另一端与散热器的出液口连通,外部低温的冷却液进入柜体01后,首先从电子信息设备02的进液端023流入电子信息设备02内。浸没液冷机柜连接件。陕西液冷机柜安装方案
本实用新型涉及机柜装置,特别涉及没式液冷机柜。背景技术:微电子芯片技术的快速发展,电子元器件的小型化、集成化的发展趋势,使得芯片组装密度不断提高,组件和设备服务器的热流密度不断加大,如果不采取合理的散热控制技术,将严重影响电子元器件的性能和寿命。目前,计算机服务器芯片散热主要采用风冷冷却技术,即用空气来直接冷却电子设备的发热元器件,利用设备元器件之间的间隙和壳体进行热传导、对流和辐射换热,实现发热元件热量向周围环境散热和冷却的目的,风冷冷却技术一般用于服务器热流密度不高的场所,当服务器热流密度高于80w/cm2,风冷所面临的高能耗,局部热岛效应以及噪音问题将非常明显,产品的可靠性也会进一步降低。浸没式液冷技术是液体冷却中效率较高的冷却方式,主要是将服务器电子元器件浸没在不导电的液体中,热量从发热元器件传到冷却液体,然后利用外部流体循环或者蒸发冷却散热传到外部环境中,从而达到高效冷却的效果。浸没式液冷技术根据选择浸没工质不同,可分为单相浸没和相变浸没两种技术。以水和空气为例,10kw的设备,控制设备温升为10度,则需要空气3250m3/h,冷却水为900l/h,两者体积相差275倍。由此可见,风冷冷却不是比较好选择。南京液冷机柜连接件全浸没式液冷机柜连接件。
微电子芯片技术的快速发展,电子元器件的小型化、集成化的发展趋势,使得芯片组装密度不断提高,组件和设备服务器的热流密度不断加大,如果不采取合理的散热控制技术,将严重影响电子元器件的性能和寿命。目前,计算机服务器芯片散热主要采用风冷冷却技术,即用空气来直接冷却电子设备的发热元器件,利用设备元器件之间的间隙和壳体进行热传导、对流和辐射换热,实现发热元件热量向周围环境散热和冷却的目的,风冷冷却技术一般用于服务器热流密度不高的场所,当服务器热流密度高于80w/cm2,风冷所面临的高能耗,局部热岛效应以及噪音问题将非常明显,产品的可靠性也会进一步降低。浸没式液冷技术是液体冷却中效率较高的冷却方式,主要是将服务器电子元器件浸没在不导电的液体中,热量从发热元器件传到冷却液体,然后利用外部流体循环或者蒸发冷却散热传到外部环境中,从而达到高效冷却的效果。浸没式液冷技术根据选择浸没工质不同,可分为单相浸没和相变浸没两种技术。以水和空气为例,10kw的设备,控制设备温升为10度,则需要空气3250m3/h,冷却水为900l/h,两者体积相差275倍。由此可见,风冷冷却不是比较好选择,采用液冷冷却技术远胜于风冷技术。关于液冷技术。
所述水箱连通所述出水管,所述水泵的出水口连通所述进水管。推荐的,还包括热交换器,所述热交换器放置于所述水箱内用于给水降温。与现有技术相比,本发明的有益效果是:1.该服务器机柜密封水冷系统,改变了在基板上安装或镶嵌水管的固定思维模式,将基板整个作为冷却水流路的一部分,增大了流经的冷却水的表面积,解决了密封水冷系统基板散热面积利用率低的问题,从而可以有效提高基板单位面积的散热能力。2.该服务器机柜密封水冷系统,在上述增大了流经的冷却水的表面积的同时减小了流经的冷却水的厚度,以反例为证,当水从一根较粗的冷却水管流过时,越接近其中部的水温度越低,越接近水管表面的水温度越高,这是由于水的比热容大,传热速度慢,因此当采用本发明的形式时,水流较薄,可以加快传热速度,即能够使单位时间、单位流量的水携带更多热量,从而提高散热能力。3.该服务器机柜密封水冷系统,由于基板为板状,而不是管状,所以更加方便安装在服务器内,夹于服务器单元之间。4.该服务器机柜密封水冷系统,在基板的两侧设置有特殊的散热装置,其形状异于市面上现有散热装置的形状和结构,适用于该基板,有助于提高散热能力。 全浸没式液冷机柜厂家。
不导电液体在螺旋桨装置的搅动下加速流动,促进散热,同时液体上方的冷凝管和风扇组件对液体上方的气体进行散热,两者结合起来显著提高了散热效果。产热元器件之间存在间隙,有利产热元器件和冷却液热交换生成的气泡充分形成和脱离,增强沸腾传热效果,同时便于单个服务器的操作和维护。可兼顾浸没式液冷相变换热和非相变换热机柜,以满足不同冷却液和不同产热元器件之间的换热需求。箱体全密封设计,确保不导电液体不外漏损害其它电子设备和机房环境,同时可减少不导电液体冷媒的消耗。附图说明图1为本实用新型的结构示意图。具体实施方式如图1所示,本实施例的浸没式液冷机柜,包括外箱体1和内箱体2,内箱体2固定在外箱体1内部,内箱体2装有不导电液体,液体内部浸没产热元器件和螺旋桨装置,液面上方、内箱体2内壁上设置冷凝管组3、风扇组件4和电气配件安装过接口5,内箱体2顶部设置可拆卸密封盖6,外箱体1顶部设置可翻转上盖7。内箱体2顶部设置可拆卸密封盖6四周开有8~16个法兰孔,与内箱体2螺接固定,可拆卸密封盖6设置可视窗,可视窗方便观察内箱体2内部工作情况,内箱体2内部为完全密封壳体,保证内箱体2内部液体和气体不会外泄。可翻转上盖7一边与外箱体1铰接。数据中心液冷机柜品牌。南京液冷机柜连接件
浸没液冷机柜定制价格。陕西液冷机柜安装方案
所述挡液板介于所述柜体的进液口与出液口之间。可选的,还包括控制装置以及用于检测所述主要发热元件的温度的温度传感器;所述控制装置与所述循环泵以及所述温度传感器信号连接,用于根据所述温度传感器检测到的温度调节所述循环泵的转速。附图说明图1为本发明实施例提供的一种单相浸没式液冷机柜的结构示意图;图2为本发明实施例提供的电子信息设备以及冷却装置内部的结构示意图;图3为本发明实施例提供的另一种单相浸没式液冷机柜的结构示意图;图4为本发明实施例提供的另一种单相浸没式液冷机柜的结构示意图;图5为本发明实施例提供的液冷板的结构示意图。附图标记:01-柜体011-供液管路012-回液管路02-电子信息设备021-主要发热元件022-次要发热元件023-进液端024-出液端03-液冷板031-流道0311-折弯部032-扰流柱033-***支管034-第二支管04-导流管路05-循环泵06-容器061-i/o转接口07-流量处理器08-挡液板具体实施方式为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步详细地描述,显然,所描述的实施例**是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例。陕西液冷机柜安装方案