轮齿的裂纹与断裂是齿轮磨损的另外一个主要原因。轮齿断裂是由于工作应力大于轮齿的断裂应力,或有裂纹的轮齿其应力强度因子大于轮齿断裂韧性所致。工作应力增大的常见原因是:机械长期超负荷工作或因操作不当、齿面磨损、齿轮与花键轴配合松旷等产生冲击载荷或因轮齿形位误差过大、箱体形位误差过大,齿轮轴变形等,使齿面啮合性能变坏,局部应力增高。轮齿承载能力低,一是锻造时有细微裂纹、夹层等;二是齿根存在着隐伤产生较大的应力集中。断齿多发生在根部。所以应该从减少工作应力的角度防止轮齿断裂。根据轴的承载情况,又可分为:转轴,心轴,传动轴.黄冈乘用车齿轮轴
和变速箱齿轮一样,变速箱轴的工作环境也比较恶劣。变速器齿轮轴在工作中,承受着交变的弯、扭力矩,键槽部位还承受着挤压、冲击和滑动摩擦的作用,因此,齿轮轴常见的损坏有轴颈、键槽的磨损以及弯、扭等。变速器轴产生缺陷后,将造成变速器工作时振动大、噪音大,还可产生跳挡、脱挡、挂不上挡等变速器故障。变速箱轴的磨损主要有以下几个原因:首先,齿轮轴弯曲变形。齿轮轴变形是由于负荷及内应力过大造成的。对工作影响较大的是弯曲变形,一般弯曲后直线度误差不应大于0.04mm。其次,与轴承配合的轴颈磨损。轴承与轴颈配合过盈量一般约为0.01~0.05mm。当过盈量消失时,内圈与轴颈间将产生相对运动而使轴颈磨损增大。但是由于轴承内圈与轴颈间的滑动阻力大于滚动阻力,因此两者之间不会形成高速相对运动;又由于变速器内润滑油较充足,当内圈与轴颈间形成0.02~0.04mm的间隙时才会形成润滑油膜,其磨损速度会大幅减慢。另外,齿轮轴花键的磨损。齿轮轴花键磨损使径向间隙与齿侧间隙增大。推土机等工程机械齿侧间隙容许值约1.40mm,汽车齿侧间隙容许值约为0.30mm。因此,应该从以上几个方面避免变速箱轴的磨损。上海齿轮轴零部件因此对齿轮轴的心部要求有一定的强度和韧性,有较高的疲劳极限和抗多次冲击能力。
齿轮热处理变形很难控制,并且会给后续加工带来很多麻烦。齿轮热处理变形一般来说都是多种因素的综合作用、相互影响所致除。预先热处理及淬透性外,零件形状、锻造、机械加工、淬火规范都可能会造成零件变形,进而影响齿轮精度和寿命。对于齿轮件来说,易变形点无非是齿形齿向、周节累计、内花键缩孔等,由经验即可判断其变形规律,根据工艺路线提前预留好加工余量或补偿量,使成品件正处于可接受的形变区间内。掌握了这些关键点,对付齿轮热处理变形就不会无所适从。
剃齿也是齿轮加工中的一种常见工艺。剃齿常用于未淬火圆柱齿轮的精加工,生产效率很高,在成批、大量生产中得到普遍的应用。剃齿机床具有径向及轴向剃齿功能,能剃削鼓形齿及小锥度齿,特别适合汽车及摩托车等行业的成批大量齿轮加工。剃齿机按控制方式分机械剃齿机(这类机床通常采用PLC方式控制)和数控剃齿机(包括一轴至六轴数控)。剃齿机按功能分全能剃齿机:(这类机床具有轴向剃、径向剃、切向剃和对角剃功能。由于机床的功能多,结构复杂,会降低机床的刚性),径向剃齿机(只有径向剃功能,机床结构简单、刚性好),通用剃齿机(机床具有轴向剃和径向剃功能)。径向剃齿机和通用剃齿机是目前应用比较普遍的两种剃削方式。按剃齿方式分自由剃(剃刀带动工件旋转,两者之间没有强制的展成运动),强力剃(剃刀轴和工件分别由两个电动控制,两轴的同步由数控实现)。剃齿工艺在齿轮加工工艺中得到普遍使用。 斜齿圆柱齿轮外啮合传动时,两齿轮转动方向相反;内啮合传动时,两个齿轮转 动方向相同。
不同的齿轮加工工艺有各自不同的特点。根据展成法原理用滚刀加工齿轮时,必须严格保持滚刀与工件之间的运动关系。因此,滚齿机在加工直齿圆柱齿轮时的工作运动有:主运动:就是滚刀的旋转运动(r/min)。展成运动:就是滚刀的旋转运动和工件的旋转运动的复合运动,即滚刀与工件间的啮合运动,两者之间应准确的保持一对啮合齿轮副的传动关系。轴向进给运动:就是滚刀沿工件轴线方向作连续进给运动,在工件的整个齿宽上切出齿形。C)滚齿加工的特点:适应性好;生产效率高;齿轮齿距误差小;齿轮齿廓表面粗糙度较差;主要用于直齿圆柱齿轮、斜齿圆柱齿轮和蜗轮。虽然滚齿加工效率高,但由于精度问题,往往还需要其它工序做进一步精加工。齿轮轴主要承受交变载荷,冲击载荷,剪切应力和接触应力大。黄冈乘用车齿轮轴
直齿圆柱齿轮齿形可以做成正常齿、短齿,并且可以变位。黄冈乘用车齿轮轴
珩磨工艺特有的网纹形状是怎么形成的呢?珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹不会重复。此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠长度,使前后磨削轨迹的衔接更平滑均匀。这样,在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差未几相等。因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨往并产生新的更多的干涉点,又不断磨往,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断进步,直至完成孔表面的创制过程。为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。由于珩磨油石采用金刚石和立方氮化硼磨料,加工中油石磨损很小,因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。珩磨前要很好地修整油石,以确保孔的精度。这一点是尤其需要注意的,不然很可能达不到预期的加工精度。黄冈乘用车齿轮轴
绪声动力科技有限公司由一群在动力和传动领域从业近二十年,拥有设计、制造、运营等方面经验,有理想有追求的专业人员于2021年3月成立,致力于创建动力总成领域线上、线下相融合的新业务模式。绪声动力立足于中国,整合全球资源,为汽车动力总成领域需求方和供给方搭建全球供应链服务平台。除了为客户提供产品和设计,还可以根据客户图纸推荐合格供应商生产,以及为客户的现有供应商提供现场支持服务,实现降本增效,提升交付水平和稳定性。绪声动力通过资源协作和专业服务,助力企业从研发到量产的整个产业化过程,包括开发设计、仿真计算、测试标定、制造工艺、精益生产、智能制造、项目管理、质量管理、设备管理、仓储物流、工业工程、采购寻源、供应商管理以及售后等。在促进汽车零部件行业在新形势下高效发展的同时,我们也致力于推动广大行业内人员的转型发展,通过在专长领域展现能力,在新的领域拓展技能,充分实现自我价值。打造具有中国本土优势的专业供应链平台,服务全球业务伙伴。