1. 工厂验收测试项目
工厂验收测试项目由生产厂家参照本规范第11节所列内容选取并报请验收工作组审批,至少应包括硬件检查、功能测试、性能测试、连续通电测试等内容以及验收工作组提出的其他测试内容。
工厂验收测试中,如某项测试内容涉及到被测点数较多时,可采取抽测方式进行。当采用抽测方式进行测试时,每项抽测点数不得少于该项被测点数总量的三分之一。被抽测的项目必须全部合格,否则该项测试应改为逐点全部测试。
2. 工厂验收流程
工厂验收流程主要步骤如下,详细流程见附录B。
(1)工厂验收条件具备后,验收工作组开始进行工厂验收;
(2)严格按审核确认后的验收大纲所列测试内容进行逐项测试、逐项记录;
(3)在测试中发现的缺陷和偏差,允许生产厂家进行修改完善,但修改后必须对所有相关项目重新测试;
(4)测试完成后,编写验收报告,并报验收工作组确定工厂验收结论。 光伏并网逆变器防孤岛测试检测负载可以任意组合各种功率输入。长沙正规自动化检测系统平台
定期检验大纲
(1)定期大纲的编制
定期检验实施单位负责编制定期检验大纲并形成定期检验大纲正式文本。
(2)定期检验大纲的内容
定期检验大纲应至少包括以下内容
(3)系统文件及资料
包括以下内容:
1. 系统硬件清单及系统配置参数;
2. 系统设计及施工图;
3. 自动化系统现场网络接线图;
4. 变电站四遥信息表(包括事故报警、预告报警的分层、分级、分类处理);
5. 系统备品、备件清单;
6. 测试仪器及工具清单;
(4) 定期检验内容
定期检验内容必须包含本规范第11节所列全部内容及定检工作组提出的其他测试内容。根据定检工作组可采取抽测方式或者全部测试方式。 河北通用自动化检测系统公司自动化测试系统产品技术特点:高效的能量回馈系统:减少测试能量损耗和测试平台配电要求。
1. 整体考核验收报告
整体考核验收完成后,由建设单位负责编写整体考核验收报告,应至少包括以下内容:
(1)整体考核验收结论(需由验收参与各方签字确认);
(2)整体考核验收遗留问题备忘录(附遗留问题的现象描述、对系统运行影响评估及处理解决的方案和预定时间,在存在偏差的情况下可使用);
(3)整体考核验收测试报告(需由测试单位签字确认);
(4)系统设备核查报告;整体考核验收大纲;三个月试运行报告。
2. 整体考核验收标准
(1)系统在三个月的试运行期间运行稳定可靠,未出现崩溃、非人工切换、死机等稳定性问题;
(2)综合性能指标的测试结果满足测试大纲各项参照指标和本规范有关条款的规定;
(3)在整体考核验收测试中,测试结果无缺陷,偏差测试项汇总数不得超过测试项目总数的2%。
通用自动化测试系统如何落地?
通过自动化测试软件框架的通用性设计,能够提高自动化测试系统的灵活性,从而缩小后勤保障规模和成本,达到由“繁”向精的转变。此外,凭借系统架构通用化的优势,还可以在标准化的前提下复用已有测试资源,缩短系统开发周期,提升系统的易用性。
建立通用自动化测试系统架构的要素包括:硬件抽象层;测量抽象层;测试开发、测试执行分离的测试框架;通用自动化测试系统架构。
1 硬件抽象层强调通过对同类仪器的接口进行标准化抽象,从而实现使用相同的接口操作不同厂家的同种仪器。目标是做到标准化设备调用方法/代码复用。
2 测量抽象层是建立在硬件抽象层的基础上,对于测量的抽象。测量抽象层对于不同的场景其实有不同的定义的,通常情况下指的是做到测试的标准化、代码的复用,以减少开发的成本。
3 测试开发、测试执行分离的测试框架指的是将自动化测试程序里的两个大部分测试流程和测试项分离,目的是为了简化测试流程。
4 通用自动化测试系统架构指的是基于业务场景,适应多产线,多机台测试需求的自动化测试标准软件框架。目的是建立符合长期业务生产逻辑的系统架构,提高人员、设备的利用率,提高产能。 自动化检测系统可以检查不同颜色电线的连接。
监测对象为广深沿江高速大桥,通过在桥墩上布设圆棱镜,每个桥墩布设3个棱镜,来进行变形观测。基准点在大桥东边岸边一侧,距离大桥约1km,基准点稳固不动。海上观测平台通过太阳能电池板加上蓄电池进行供电,蓄电池可以输出220V交流电给徕卡TM50使用。另外,徕卡TM50通过外接GPRS模块进行无线通讯,通过Internet连接到徕卡GeoMoS_CH系统中,实现数据的实时回传。徕卡GeoMoS自动化监测系统、稳定、可靠、高精度!目前项目稳定运行,对各监测点的水平位移和沉降监测精度均达到较好,得到客户的充分肯定。通过对广深沿江高速的监测,保障了深中通道项目的正常实施,同时对桥上人员和车辆安全提供强有力的保障。并网逆变器测试系统满足并网逆变器的防孤岛效应保护试验、过载保护试验等。宁波WAGO通用自动化检测系统设计
自动化测试系统是什么?长沙正规自动化检测系统平台
近年来,信息化技术不断发展,基于大数据、人工智能、物联网、云计算等学科技术不断与工程监测融合,“互联网+”及信息化已经成为目前监测领域前沿的发展方向。近年来,轨道交通、水利水电、大型工民建等各行业施工技术水平不断发展,超高层建筑、深大基坑、地铁盾构下穿既有线路等高难度施工项目越来越多,诸如此类高危险源施工项目对施工过程中的监控量测也要求愈来愈高,亟需高精度、智能化、自动化、信息化的监测系统为施工过程保驾护航。测量机器人以其自动识别、自动跟踪、自动照准目标并进行数据采集等优点已广泛应用于地质滑坡、大坝、路桥、隧道,超高层建筑等各种工程建设及运营安全监测项目,近年来梅文胜等学者基于测量机器人进行了变形监测系统开发研究工作,极大地促进了自动化监测系统的发展及应用,随着信息化技术的不断进步,自动化监测系统功能也在不断地改良与完善。工程项目安全事故往往造成巨大的损失,给社会各方面带来负面影响,随着施工运营期安全监测任务目标的提高,安全监测工作的重要性越来越大,数据的采集效率,处理分析能力都需要随着施工运营安全系数的增大而提高,亟需功能全部便捷的自动化监测系统。长沙正规自动化检测系统平台