柔性电流探头是一种专门设计用于检测电流的传感器,其主要特征在于采用了柔性材料制造,赋予了它极高的灵活性与适应性。这种探头能够轻松弯曲并适应各种复杂形状及狭小空间内的电气测量需求。从结构上看,柔性电流探头主要由三个关键组件构成:感应线圈、信号处理芯片以及包裹它们的柔性基底。感应线圈负责捕捉由被测电流产生的磁场变化;信号处理芯片则对捕获到的信号进行放大和解析;而外部包裹的柔性材料不仅保护内部元件免受损害,还确保了整个装置可以自由弯曲而不影响性能。柔性电流探头的主要作用是在不切断电路的情况下,用于测量交流或直流电流。差分探头p5200

光隔离探头是一种电子元器件,通常用于隔离电路中不同电位点之间的光电耦合元件。它通常由发光二极管(LED)、光敏二极管(PD)、光纤等组成,通过改变LED的电流来改变输出电路中的光信号,实现对电路隔离的目的。光隔离探头的主要作用是确保电路的安全性和稳定性,通过其隔离作用,可以避免电路中不同电位点之间的电压差导致的不必要电流流动,从而防止电路的故障和烧毁,甚至危及人身安全。在测试测量领域,光隔离探头是示波器的一种测量探头,它解决了传统电缆传输方式中的一些问题,如不绝缘、带宽受限、难以同时满足高压、低压、高带宽及信号完整性指标、对高压高频共模干扰抑制能力较差等。山东省柔性电流探头品致示波器探头在电源、半导体、电机电路、电力电子等多个领域都有广泛的应用。

电流探头通过电磁感应或半导体效应,将导线中的电流转化为电压信号,供示波器等设备测量。其原理分为两类:
电磁感应式(磁性探头)
法拉第电磁感应定律:当交流电流通过导线时,会在周围产生变化的磁场。探头内部的磁芯(如铁氧体)感应这一磁场,次级线圈中产生比例电压。
特点:适用于高频交流测量(带宽可达MHz级),但无法测量直流或极低频信号。常见于开关电源、射频电路分析。
霍尔效应式
霍尔效应:当电流通过导体时,垂直于电流方向的磁场会产生电势差(霍尔电压)。探头中的霍尔元件检测这一电压,转化为与电流成正比的信号。
特点:可同时测量直流和交流信号(带宽通常从直流到几百kHz),精度受温度影响,但宽频带特性使其在电机驱动、电池测试等领域广泛应用。
其他原理
电阻采样式:通过低阻值精密电阻(分流器)测量电压降,间接计算电流。需放大电路处理微小电压信号,适用于低电流测量。
光电式/热电偶式:利用光强变化或热电效应间接测量电流,但应用较少。
差分探头:分为有源差分探头和高压差分探头。有源差分探头具有低的负载效应、更高的信号保真度、高动态范围以及极微小的温漂等特点。主要用于测试高速信号,特别是差分信号。
电流探头:分为AC/DC电流探头以及AC电流探头。AC/DC电流探头可以测量直流以及交流电流的大小,而AC电流探头只可以测量交流电流的大小。主要用于测量流经导线的电流大小,并通过测量电路周围磁场的变化来获得电流信号。
差分探头主要用于观测差分信号:差分信号是相互参考、而不是以地作为参考点的信号。普通的单端探头也可以测量差分信号,但得到的信号与实际信号相差很大,有可能出现“地弹”现象。 零磁通电流探头适用于需要高精度测量大范围直流和交流电流的场合。

类型与选型指南
根据结构、测量范围和应用场景,电流探头可分为以下类型:
钳形电流探头特点:非接触式测量,直接夹持导线,适用于大电流(如工业电力系统)。应用:电机电流监测、三相电测量。
柔性罗氏线圈探头特点:无磁芯设计,柔性线圈环绕导线,适合高频大电流脉冲(如逆变器测试)。应用:雷电冲击试验、开关电源分析。
高频电流探头特点:带宽超过50MHz,专为快速瞬态电流分析设计。应用:EMI诊断、数字电路测试。
低电流探头特点:高灵敏度,可测量μA级微小电流。应用:低功耗电子设备、生物电信号检测。
选型建议:
带宽:高频应用需选择≥50MHz的探头。
电流范围:预留20%余量,避免过载损坏。
精度:精密测量场景选择误差≤±1%的探头。
上升时间:数字电路测试选择<10ns的型号。
输出接口:确保与示波器或数据采集设备兼容(如BNC、USB)。 示波器电流探头具有较高的灵敏度,能够测量微弱的电流信号,如最小灵敏度可达10mA/格。山东省柔性电流探头
定期对示波器电流探头进行校准,以确保其测量精度和准确性。差分探头p5200
作用:非侵入式测量的价值
电流探头通过非接触或微侵入方式测量电流,解决了传统方法需断开电路的痛点,其作用包括:
电流波形观测将电流转化为电压信号,配合示波器显示波形,分析电流的瞬态特性(如上升时间、下降时间)。
功率测量结合示波器的电压测量功能,计算瞬时功率、真实功率、视在功率及相位差。
故障诊断与优化在电力系统中监测电网电流,定位故障点;在工业控制中实时监测设备电流,确保稳定运行。
兼容性与扩展性输出接口(如BNC)与示波器匹配,支持高频、大电流或微小电流测量,适应不同场景需求。 差分探头p5200