旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取***的编码,当转动超过360度时,编码又回到原点,这样就不符合绝DUI编码***的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码***不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多, 这样在安装时不必要费劲找零点, 将某一中间位置作为起始点就可以了,而**简化了安装调试难度。
绝对式编码器是直接输出数字的传感器。常州BEI GHU925-1024-007 增量编码器特价

编码器的脉冲信号,在长距离的传输中,由于电压的升降,会产生锯齿效应。HTL接口的信号电平较高,电压上升高,锯齿效应明显,所以不太适合长距离传输。开路集电极由于输出只能主动朝一个方向切换,锯齿效应比HTL还要严重,在长距离有更多的问题,因此也不适合于长距离传输。而TTL接口信号电平较低,电压不上升像HTL那么高,锯齿效应没有HTL那么明显。并且,TTL还可以使用差分信号进行测量。因此TTL接口适用于更长的距离和更高的频率。 马鞍山BEI DHO512-1024-005 增量编码器定制价格用于测量速度,位置,速度或角度等物理量。

PLC能输入开关量,也就是一高一低的电平电压,而编码器脉冲信号,可以理解一定时间内,用极快的速度完成的一组开关量。但是因为这种开关量的频率太高了,所以PLC的普通I/O口是无法准确读到这些脉冲的个数的,因为PLC工作过程中存在扫描周期,需要每个一段时间才去刷新一下普通I/O口的数据,而编码器的精度太高了,单位时间内输出的脉冲个数太多,普通I/O是无法胜任的。一般PLC会设计有高速计数端口,本质是利用了底层单片机的硬件逻辑来完成这些编码器计数的,避开了扫描周期问题,PLC都设计有专门的高速计数指令,使用的时候,直接调用这些指令就可以读到当前的脉冲值了。绝对值编码器在定位方面明显地优于增量式编码器。

在光栅板上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间**一个增量周期;检测光栅上刻有A、B两组与光栅板相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和码盘上的节距相等。并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差90度电角度。当码盘随着被测轴转动时,检测光栅不动,光线透过码盘和检测光栅上透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差90度电角度的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。编码器被广泛应用于需要精细确定位置及速度的场合。常州BEI SHU9-305BGB13B16B3R010D4绝DUI值编码器代理
电动机输出信号反馈系统、测量和控制设备中都会用到编码器。常州BEI GHU925-1024-007 增量编码器特价
以上这种定位叫增量坐标系,所以编码器就是增量型编码器,应用比较一个,因为灵活而且价格便宜。如果只设备只需要转一圈的,也就是角度在360°内的,编码器可以细分精密一点,比如有13位,相当于2^13次方个脉冲一圈,对应着360°,这种脉冲数和角度一一对应,不怕系统断电需要重新调整零位,这种编码器叫单圈绝对值编码器。如果负载需要转多圈的,但是这个圈数也不能非常多,比如5圈,相当于5*360°=1800°,这样脉冲和1800°一一对应,这些在一些好货的数控机床上应用比较多,可以知道丝杆或者一些旋转工作的当前精密位置,而且不用担心系统断电归零问题。 常州BEI GHU925-1024-007 增量编码器特价