HPLC芯片电力线载波通信与一般架空线载波通信的不同点是:在同一电网内可用的频谱范围自8kHz~500kHz,只能开通有限的通道,如每个单向通道需占用标准频带4kHz,则该频带不能重复使用,否则将产生严重的串音干扰。故一般电力线载波设备均采用单路单边带体制,每条通道双向占用2×4kHz带宽,总共61条电路。如果需要开更多电路,则必须采取加装电网高频分割滤波器的隔离措施。发信功率限制:由于载波电流在电力线上传输时会向空间辐射电磁波,干扰该频段内的广播和飞行、航海等导航业务,所以各国官方均对发信功率加以限制,通常10瓦输出可传输几百公里,而某些大于1000公里的线路,也允许将输出功率提高到100瓦。电力线载波通信(PLC)是电力系统基本的通信方式。浙江电力线通信PLC芯片
电力线载波技术装备水平有很大提高,从五六十年代双边带电子管ZDD-I/2、ZS-3等发展到如今的ESB500、ZDD-27/36等全集成化单边带载波机,并推出了数字式载波机。在一些重大工程中还陆续引进了一些具有国际先进水平的载波设备,解决了实际应用中一些国产机暂时无法解决的问题,也为国产机的改进和提高提供了可贵的借鉴。理论研究成果卓著。如在频谱管理上,采用了图论、地图色理论和计算机技术,提出了分段设计、频谱分组、电网分段或分区、频率重复使用等,并开发出了软件包,可实现用计算机进行设备管理、频率管理、新通道设计和旧通道改造、插空安排设备等。为适应现代通信技术的发展,数字式电力线载波机的开发研制也取得了实质性的进展。此外,传输理论、组网技术等方面的研究也不断有新的进展。浙江电力线通信PLC芯片随着智能电网的发展,电力系统对数据采集实时性要求越来越高。
HPLC芯片的通信性,能够监测和网络优化通过监测数据,预判网络风险,监测节点信号强度、相邻节点信息、网络路径信息,提前介入对通信网络持续优化。可以评价芯片厂商、模块厂商设备运行,分析网络运行水平,调整HPLC性能参数,优化通信网络;网络运行状态可视化,采集系统提前预警潜在通信风险台区或表计:100%台区可获取网络拓扑;100%台区邻网络信息可准确获取;90%以上载波模块上下行通信成功率上报;90%以上载波模块在线状态及离线次数上报;总之,主站综合获取的信息进行台区或者表计通信风险分析评估,对问题潜在风险台区或表计进行预警,结合地理信息、用电户信息分析出问题原因,为现场运维提前介入提供指导。
HPLC芯片的应用领域:HPLC已成为智能电网、能源管理、智慧家庭、光伏发电、电动汽车充电等应用的主要通信手段。另外,相比于窄带载波技术,HPLC的通讯速率从窄带的数Kbps,提升到了数百Kbps甚至数Mbps,通信可靠性和稳定性也有明显的提升,极大地满足了用电信息采集的需求,为电业部门及其他公共事业部门提供了完整可靠的载波通讯解决方案。 然而,已有的研究表明,电力线是一种复杂的通信媒介,无处不在的噪声,负荷变化,以及一些不可预测的干扰,都会严重影响信号传输的质量,要保证通信质量、提高通信速率,选择合适的调制方式是一个关键问题。电力线载波技术对于稳定、可靠、丰富的资源系统也易于获取。
高速电力线载波PLC通信技术,是为提供端到端接入而设计的。该技术采用了增强型模拟前端处理EnAFE技术、多电平频移键控MFSK技术和正交调幅QAM技术,把载有信息的高频加载于电流,然后用电线传输,接受信息的数字式电力线调制解调器再把高频从电流中分离出来,并传送到计算机或电话,以实现信息传递。硬件方面,在用户变压器的低压侧安装电力线路由器,用户端安装一个数字式电力线调制解调器用通信电缆与个人电脑相连,并把调制解调器的插头插入电源插座即可。让PC和笔记本计算机的使用者轻松地通过家中供电线路连接上Internet互联网络。电力线载波通讯技术能够有效监测和控制电网中的家用电器。浙江电力线通信PLC芯片
HPLC芯片经济可靠,电力线路载波通信利用十分坚固的电力线路传递信号。浙江电力线通信PLC芯片
HPLC芯片具有哪些基本的特征?干扰噪声多样。电力线载波通信的较大干扰是噪声,其主要来源是电力网上的所有负载、无线电广播、天电等等。电力线的噪声在室内和室外有所不同,但大致可分为:有色背景噪声,这类噪声主要来源于交直流两用电动机,其功率谱密度随着频率增加而减小,变化缓慢;窄带噪声,主要由电力线的驻波或谐振和短波广播所致,其功率谱密度在该频段内几乎保持不变;与工频异步噪声,来源于电力线上的一些电子设备,主要分布在50Hz~200Hz;与工频同步噪声,一般由工作在电网频率的开关器件造成其噪声频率为工频或其整数倍,持续时间长,频率覆盖范围广,功率大,功率谱密度随着频率上升而减小。浙江电力线通信PLC芯片