发射端与预定目标之间的大气杂质会产生虚假回波——这些大气杂质产生的虚假回波可能会非常强烈,以至于无法可靠的检测到来自预定目标物的回波信号。可用光功率限制——更高功率的光束可以提供更高的精度,但也更加昂贵。扫描速度——激光光源的工作频率可能对人眼造成危害并引发安全问题,然而我们可以通过其他方法来缓解这个问题。例如,固态LiDAR能够在不威胁人眼安全的波长下运行,并且还能照亮更广阔的区域。来自附近其他LiDAR装置的信号串扰可能会干扰目标信号。激光雷达的实时性使其成为智能交通系统的重要组成部分。轨旁入侵激光雷达制造商

下游主要客户:车载领域,目前,在智能驾驶市场中,ADAS+ADS双轮驱动,激光雷达作为智能驾驶画龙点睛的产品,不可或缺。在高级辅助驾驶市场,激光雷达的成本不断下降,商业化进程有望提速,全球范围内L3级辅助驾驶量产车项目当前处于快速开发之中。世界各地交通法规的修订为L3级自动驾驶技术商业化落地带来机会。2020年6月通过的《ALKS车道自动保持系统条例》,这是全球范围内头一个针对L3级自动驾驶具有约束力的国际法规。随着激光雷达成本下探至数百美元区间且达到车规级要求,未来越来越多高级辅助驾驶量产项目将实现量产;根据Forst&Sullivan的研究报告,2021-2026E、2026E-2020E全球乘用车新车市场ADAS车辆销售CAGR有望达75.5%、30.5%,其中中国增速较高,分别为92.2%/29.3%。河北高精度激光雷达仓储管理运用激光雷达清点库存,提高货物盘点效率。

LiDAR还能够用于确定测量目标的速度。这可以通过多普勒方法或快速连续测距来实现。例如,可以使用LiDAR系统测量风速和车速。另外,LiDAR系统能够用于建立动态场景的三维模型,这是自动驾驶中会遇到的情形。这可以通过多种方式来实现,通常使用的是扫描的方式。LiDAR 技术中的挑战,在可实现的LiDAR系统中存在一些众所周知的挑战。这些挑战根据LiDAR系统的类型有所不同。以下是一些示例:隔离和抑制发射光束的信号——探测光束的辐射亮度通常远大于回波光束。必须注意确保探测光束不会被系统自身反射或散射回接收器,否则探测器将会因为饱和而无法探测外部目标。
目前的激光雷达,不光只有光探测与测量,更是一种集激光、全球定位系统(GPS)和IMU(InertialMeasurementUnit,惯性测量装置)三种技术于一身的系统,用于获得数据并生成精确的DEM(数字高程模型)。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑,测距精度可达厘米级,激光雷达较大的优势就是"精确"和"快速、高效作业"。随着激光雷达技术的进步与发展,星载激光雷达的研制和应用在20世纪90年代逐步成熟。2003年,NASA根据早先提出的采用星载激光雷达测量两极地区冰面变化的计划,正式将地学激光测高仪列入地球观测系统中,并将其搭载在冰体、云量和陆地高度监测卫星上发射升空运行。激光雷达在虚拟现实技术中实现了真实世界的数字化重建。

反射强度,LiDAR 返回的每个数据中,除了根据速度和时间计算出的反射强度其实是指激光点回波功率和发射功率的比值。而激光的反射强度根据现有的光学模型,可以较好的刻画为以下模型。我们可以看到,激光点的反射率和距离的平方成反比,和物体的入射角成反比。入射角是入射光线与物体表面法线的夹角。时间戳和编码信息,LiDAR 通常从硬件层面支持授时,即有硬件 trigger 触发 LiDAR 数据,并支持给这一帧数据打上时间戳。通常会提供支持三种时间同步接口,IEEE 15882008同步,遵循精确时间协议,通过以太网对测量以及系统控制实现精确的时钟同步。激光雷达在灾害救援中提供了准确的现场信息支持。广东站台入侵激光雷达
电力巡检时激光雷达识别线路故障,提高巡检精度。轨旁入侵激光雷达制造商
激光雷达产业自诞生以来,紧跟底层器件的前沿发展,呈现出了技术水平高的突出特点。激光雷达厂商不断引入新的技术架构,提升探测性能并拓展应用领域:从激光器发明之初的单点激光雷达到后来的单线扫描激光雷达,以及在无人驾驶技术中获得普遍认可的多线扫描激光雷达,再到技术方案不断创新的固态式激光雷达、FMCW激光雷达,以及如今芯片化的发展趋势,激光雷达一直以来都是新兴技术发展及应用的表示。适用于实现部分视场角(如前向)的探测,因为不含机械扫描器件,其体积相较于其他架构较为紧凑。轨旁入侵激光雷达制造商