其定位精度约为40米量级。而通过对SAR遥感影像定位误差源的相关文献进行分析,本文借助基于有理多项式模型的无控立体平差模型和SAR遥感影像的时延校正模型,去除SAR遥感影像中存在的定位偏差,实验结果如表3-1和3-2所示。通过对上表结果进行分析可知,经过时延校正和立体平差后,三号SAR立体像对的定位精度可以达到3米左右。基于校正后的三号SAR立体像对和吉林一号多源光学遥感影像,以SAR立体像对中的匹配点作为虚拟控制点,建立多源光学/SAR遥感影像定位精度提升模型,并辅助以差异化权重设计策略,得到经过校正后的多源光学/SAR遥感影像的定位精度,并将该结果与常用的两种联合平差模型和融合校正模型处理前后的结果进行了比较,如表3-3所示。通过对表3-3的定位误差进行分析可知,本文所提出的多源光学/SAR遥感影像定位精度提升模型能够在相同条件下取得更优异的定位结果。同时,图3-2展示了定位精度提升后的光学/SAR遥感影像部分区域的融合结果图,可以看出经过处理后光学/SAR遥感影像之间的相对定位误差可以达到像素级。总结本文针对多源光学/SAR遥感影像定位精度提升问题,以有理多项式模型为基础,通过对光学遥感影像和SAR遥感影像的定位误差源进行分析。中山光学测量系统,可以咨询位姿科技(上海)有限公司;长宁区光学测量仪器
PST光学定位(光学追踪)使用实际物体进行3D交互和3D测量(即追踪目标物),无需连线。追踪目标是可以被PST光学定位仪(光学追踪/光学追踪)识别并确定3D位置和方向的物理对象。正如使用鼠标对指针进行2D定位一样,目标物可用于对物体进行6自由度3D定位。以毫米精度对目标物的3D位置和方向(姿态)进行光学定位,从而确保无线操作。光学追踪目标物示例该系统基于红外(IR)照明,可以减少来自环境的可见光源的干扰。通过使用用反光标记点,可以将任何物体变为追踪目标。也可以将IRLED用作标记点,通常称为“活动标记点”。PST使用这些标记点来识别目标并重建其姿态。基本上,任何物理对象都可以用作追踪目标,例如笔、立方体甚至玩具车。也可以使用其他光学定位系统经常使用的类似天线的目标物。1.被动反光标记点反光标记点用于将对象转换为追踪目标。PST使用这些标记点来识别对象位置并确定其姿势。为了使PST能够确定目标的位姿,必须使用至少四个标记点。标记点的大小确定比较好追踪距离:对于,建议使用小直径为7毫米的圆形或球型标记点。对于设定追踪目标,PST可以使用平面反光标记点和球形标记点。反光标记点。支持平面和球形标记点。新疆光学测量公司地址云南光学测量系统,可以咨询位姿科技(上海)有限公司;
而精确度是指同一项目的测量彼此之间的接近程度。这样,精度和准确性都是单独的。换句话说,可能非常准确,但不是非常精确,反之亦然。达到比较好测量的准确度和精度都很高。飞镖盘是演示精度和准确性之间差异的经典方法。盘中心是准心。飞镖降落到离中心距离越近,其精度就越高。(左)如果飞镖紧密地散布在中心附近,则既精确又精确。(中)如果所有的飞镖都靠得很近,但是离中心很远,即是精度,而不是准确度。(右)如果飞镖既不靠近中心也不彼此靠近,则既没有精度也没有准确度。根据标准ISO5725-1,光学追踪精度定义为真实性和精度的组合。真实度是测量值与真实位置之间的差;它通常由重复测量的平均值表示,通常指系统误差。精度是可重复性的度量;它通常由重复测量的标准偏差表示,指的是随机误差和噪声。表述上通常将高度依赖于空间中测量位置的光学追踪系统的精度和准确度误差定义为基准定位误差(FLE)。光学追踪系统的准确性术语“准确性”通常用于描述光学追踪技术。但其应用和定义可能不一致。首先必须在应用精度和固有光学追踪系统精度之间进行区分。应用程序准确性包括许多错误源:光学追踪系统的固有精度(例如,相对于设备的工作空间中的测量位置)。
NDI)和两个EM追踪器的腹腔镜的追踪准确性,该光学追踪器追踪安装在轴上的回射标记,而EM追踪器将传感器嵌入近端。然后,我们使用触控笔测试追踪器的位置测量精度和距离测量精度。,我们评估了由EM追踪的腹腔镜和EM追踪的LUS探头组成的图像引导系统的准确性。结果在使用标准评估板的实验中,两个光学追踪器(Atracsys&NDI)在位置和方向测量中的抖动比EM追踪器小。此外,光学追踪器在测试体积内显示出更好的方向测量一致性。但是,它们的相对位置测量精度会随着距离的增加而显着降低,而EM追踪器的性能却是稳定的。在50mm的距离处,两个光学追踪器(Atracsys&NDI)的RMS误差分别为,而EM追踪器的RMS误差为。在250mm距离处,两个光学追踪器(Atracsys&NDI)的RMS误差分别变为,而EM追踪器的RMS误差为。在使用触控笔的实验中,两个光学追踪器(Atracsys&NDI)在定位触控笔笔尖时的RMS误差为,EM追踪器为。我们的电磁追踪腹腔镜和LUS系统组合的原型使用代表性的校准方法,显示腹腔镜的RMS点定位误差为,LUS探头的RMS点定位误差为,前者的较大误差主要是由于三角测量误差造成的使用窄基线立体腹腔镜时。上海光学测量系统,可以咨询位姿科技(上海)有限公司;
全自动焦距仪产品特点:●测量精度高●实时在线测量●操作简单●测试报告打印产品应用:●单透镜测试●透镜组测试●柱面镜测试●非球面镜测试球面测试工作站产品特点:●测量精度高●采用先进气浮技术●实时在线测量●操作简单●透射、反射双模式测量●测试口径范围广产品应用:●单透镜测试●透镜组测试●光学组件测试●镜组偏心测试●内窥镜测试●红外反射偏心测试、装调数字光电自准直仪产品特点:●大视场●双轴同时测量●多种测量模式可选●测量精度高●操作简单●计算结果快速实时显示产品应用:●光学微小角度测试●光学定向●光学检测及调校●精密转台回转精度、定位精度测试●精密机械产品检测及安装定位●微小震动检测数字偏心仪产品特点●测量精度高●采用先进气浮技术●实时在线测量●操作简单●透射、反射双模式测量产品应用●单透镜测试●透镜组测试●光学组件测试●镜组胶合●镜头装调以上的几种光学测量仪器很受广大用户的欢迎,如果您对这些仪器有兴趣,可以通过下面的联系方式咨询或者购买!山西光学测量系统,可以咨询位姿科技(上海)有限公司;安徽的光学测量
吉林 光学测量系统,可以咨询位姿科技(上海)有限公司;长宁区光学测量仪器
机械人**们可以把精力放在机器人该做什么?手和工具应该放在哪?而不是该怎样实现所要求的动作。对于具有很多运动部件的复杂的机械结构,机械手实现一种动作,机械臂可以有不同运动的方法。比如说,人的手臂,手的位置和方向一定时,肘部可以有不同的运动。Actin就是利用这种运动学的冗长性自动生成智能控制,包括避开碰撞,关节角度的限值。能量小运动和抵抗环境外力能力比较好化。通过可设置的面向对象的设计,Actin可以应用于多种机器人。它可以既可以应用于固定式的工业机器人,比如说,工厂自动生产线的机器人。也可以应用于移动式的机器人,如:家庭和娱乐用机器人、协作机器人。Actin适用于很多种型式关节和手部,它可以仿真和控制无限个自由度和分支联接的结构。Actin的能力包括:·动态模拟任何台数的机器人·蒙地卡罗(MonteCarlo)仿真分析·模拟柔性关节·视觉演示机器人·控制系统的表达用可扩展标记语言。长宁区光学测量仪器
位姿科技(上海)有限公司致力于数码、电脑,是一家贸易型公司。公司业务分为光学定位,光学导航,双目红外光学,光学追踪等,目前不断进行创新和服务改进,为客户提供良好的产品和服务。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于数码、电脑行业的发展。位姿科技凭借创新的产品、专业的服务、众多的成功案例积累起来的声誉和口碑,让企业发展再上新高。
软体高压氧舱以其独特的软质材料和灵活的设计,为用户提供了前所未有的舒适感和便捷性。这种氧舱通常采用可折叠或可调节的设计,能够根据用户的实际需求调整大小和形状。软体高压氧舱内部填充有柔软的填充物,能够很好地贴合人体曲线,减轻长时间氧疗带来的压迫感。同时,它的表面覆盖有透气、抵抗细菌的材料,确保用户在享受高压氧疗的同时,也能保持肌肤的舒适和健康。此外,软体高压氧舱还具备轻便易携的特点,用户可以根据需要轻松移动或存放。软体高压氧舱的出现,不只提升了氧疗的舒适度和灵活性,还为用户带来了更多的便利和选择。硬体高压氧舱,结构坚固,耐用可靠。长沙负离子高压氧舱型号经济型高压氧舱以其实惠的价格和出色的性能,成...