氮分子中存在氮氮叁键,键能很大(941 KJ/mol),以至于加热到3273K时*有0.1%离解,氮分子是已知双原子分子中**稳定的。氮气是CO的等电子体,在结构和性质上有许多相似之处。 不同活性的金属与氮气的反应情况不同。与碱金属在常温下直接化合;与碱土金属 —般需要在髙温下化合;与其他族元素的单质反应则需要更高的反应条件。现场制氮是指氮气用户自购制氮设备制氮,工业规模制氮有三类:即深冷空分制氮、变压吸附制氮和膜分离制氮。利用各空气的沸点不同使用液态空气分离法,将氧气和氮气分离。将装氮气的瓶子漆成黑色,装氧气的漆成蓝色。氮气进一步降低温度时,更会形成白色晶状固体。诸城球形氮气
深冷空气分离技术制备氮气 氧、氮可以任意比例混合,构成不同浓度的气体混合物及溶液。把氧、氮溶液置于一封闭容器中,在溶液上方也和纯物质一样会产生蒸汽,该蒸汽是由氧、氮蒸汽组成的气态的相混合物。对于氧氮二元溶液,当达到汽液平衡时,它的饱和温度不但和压力有关,而且和氧、氮的浓度有关。当压力为1at时,含氮为0%,2%,10%的溶液的沸点列于表1-5。从表可知,随着溶液中低沸点组分(氮)的增加,溶液的组和温度降低,这是氧-氮二元溶液的一个重要特性。制取氮气分外是将液氮罐金属软管与进/排液阀处的讨论举行团结时。
膜分离制氮 膜分离空分制氮也是非低温制氮技术的新的分支,是80年代国外迅速发展起来的一种新的制氮方法,在国内推广应用还是2010-2017年的事。 膜分离制氮是以空气为原料,在一定的压力下,利用氧和氮在中空纤维膜中的不同渗透速率来使氧、氮分离制取氮气。它与上述两种制氮方法相比,具有设备结构更简单、体积更小、无切换阀门、操作维护也更为简便、产气更**min以内)、增容更方便等特点,但中空纤维膜对压缩空气清洁度要求更严,膜易老化而失效,难以修复,需要换新膜,膜分离制氮比较适合氮气纯度要求在≤98%左右的中小型用户,此时具有较好功能价格比;当要求氮气纯度高于98%时,它与同规格的变压吸附制氮装置相比,价格要高出30%左右,故由膜分离制氮和氮纯化装置相组合制取高纯氮时,普氮纯度一般为98%,因而会增加纯化装置的制作成本和运行成本。
深冷空气分离技术制备氮气 压力-浓度图和温度-浓度图 在工业生产中,气液平衡一般在某一不变条件下进行的。 是根据T=常数,绘出的氧、氮平衡系的P-X图,纵坐标为压力,横坐标取氮的液相及气相浓度(也可取氧的浓度)。每给定一个压力就对应有一个液相及气相浓度。分别连接不同压力下的气相浓度点及液相浓度点,则可得出图中所示的饱和蒸汽线(虚线)和饱和液体线(实线)。其余相区如图所示。 在某一压力P1下,与液、汽饱和线的交点分别为点1(X1)和点2(y2),又因为PN20>PO20根据康诺瓦罗夫定律,氮组分在气相中的浓度要大于在液相中的浓度y2>x1。 一般蒸发(冷凝)过程是在等压下进行的,所以用T-X图来研究这一过程更为方便。液氮,就是液态的氮气。
氮气在常况下是一种无色无味的气体,熔点是63 K,沸点是77 K,临界温度是126 K,难于液化。溶解度很小,常压下在283 K 时一体积水可溶解0.02体积的氮气。 氮气是难液化的气体。氮气在极低温下会液化成无色液体,进一步降低温度时,更会形成白色晶状固体。在生产中,通常采用黑色钢瓶盛放氮气。氮分子中存在氮氮叁键,键能很大(941 KJ/mol),以至于加热到3273K时*有0.1%离解,氮分子是已知双原子分子中**稳定的。氮气是CO的等电子体,在结构和性质上有许多相似之处。使用前的检查液氮罐在充填液氮之前,首先要检查外壳有无凹陷。制取氮气
了解到液氮的特性和液氮罐的简要构造,正确使用它才能充分发挥其性能。诸城球形氮气
深冷空气分离技术制备氮气 汽液平衡浓度图(y-x图) 在一定压力下,取二元溶液中低沸点组分(氮)的浓度xN2为横坐标,与其平衡的气相中氮浓度yN2为纵坐标,构成的图叫y-x图 在y-x图中P3>P2>P1。当压力愈低时,等压线离y=x的对角钱就愈远,表示组分在汽液中相的浓度差愈大,混合物分离就愈容易。 当压力一定时,由于采用低沸点组分为坐标的,气在气相中的浓度大于液相中的浓度,所以等压线均在对角线(y=x线)以上,并为向上凸起曲线。如以高沸点组分氧为浓度坐标时则相反。 用y-x图了解气液平衡时气液相浓度的关系非常清楚和方便,所以在二元溶液精馏过程中,分析塔板上气液浓度变化时常要用到该图。诸城球形氮气
潍坊恒胜气体有限公司致力于化工,是一家贸易型的公司。公司业务分为工业气体,氧气,氮气,氩气等,目前不断进行创新和服务改进,为客户提供良好的产品和服务。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于化工行业的发展。恒胜气体秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。